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1. Introduction

In instantaneous stochastic perturbation theory (ISPT), the representative stochas-

tic fields are given by a sum of tree diagrams with random fields attached to their

leaves [1]. The numerical evaluation of these diagrams requires the vertices of the

theory to be programmed up to the desired order in the coupling.

In this note, the computation of the vertices is discussed in the case of Wilson’s

formulation of lattice QCD. Both SF [2] and open-SF [3] boundary conditions are

considered.

2. Action

The lattice theory is set up as in ref. [3]. Further details, particularly on the gauge-

fixing [4], are given in the notes [5]. Only the Wilson gauge action is considered and

all O(a)-improvement boundary counterterms are set to their tree-level values (thus

c1 = 0 and cG = c′
G
= 1).

2.1 Gauge action

Let S0 be the set of oriented plaquette loops on the lattice. The Wilson gauge action

is then given by

SG =
1

g20

∑

C∈S0

w0(C) tr{1− U(C)}, (2.1)
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where g0 denotes the bare coupling and U(C) the ordered product of the link variables

around the plaquette loop C. The weight factor w0(C) is equal to
1
2 for the space-like

loops C at time 0 and equal to 1 in all other cases.

In perturbation theory, the link variables

U(x, µ) = exp
{

g0Aµ(x)
}

, Aµ(x) = Aa
µ(x)T

a, (2.2)

are represented through a gauge potential Aa
µ(x). The change of integration variables

in the functional integral from the link variables to the gauge potential is associated

with a Jacobian that amounts to adding the term

Sm = −
∑

x,µ

tr
{

ln
[

J(g0Aµ(x))
]}

(2.3)

to the total action. In this expression, J(X) denotes the linear operator acting on

the Lie algebra su(N) of the gauge group, which represents the differential of the

exponential map (see appendix A).

2.2 Gauge-fixing and ghost action

As discussed in the notes [5], a natural choice of the gauge-fixing action in the case

of open-SF boundary conditions is

Sgf =
1
2λ0

T−1
∑

x0=0

′ ∑

~x

∂∗µA
a
µ(x)∂

∗
νA

a
ν(x) (2.4)

together with the prescription

A0(x− 0̂) = −A0(x) at x0 = 0. (2.5)

The primed summation symbol in eq. (2.4) implies that the terms at x0 = 0 are

counted with weight 1
2 and all other terms with weight 1.

When SF boundary conditions are chosen, the gauge-fixing action

Sgf =
1
2λ0

{

T−1
∑

x0=1

∑

~x

∂∗µA
a
µ(x)∂

∗
νA

a
ν(x) +

1

T 3L3

∑

y,z

Aa
0(y)A

a
0(z)

}

(2.6)

includes two terms, where the second fixes the residual (constant) gauge transfor-

mations at time x0 = 0 (in ref. [2] the gauge was fixed in a slightly different way).
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In all cases, the associated Faddeev-Popov ghost action assumes the form

SFP =
T−1
∑

x0=0

∑

~x

∂0c̄
a(x)

{

J(g0A0(x))
−1∂0 + g0AdA0(x)

}

ca(x)

+
T−1
∑

x0=0

′ ∑

~x

3
∑

k=1

∂k c̄
a(x)

{

J(g0Ak(x))
−1∂k + g0AdAk(x)

}

ca(x) (2.7)

with the boundary conditions

c(x) = c̄(x) = 0 at x0 = T (2.8)

and additionally

∂kc(x) = ∂k c̄(x) = 0 at x0 = 0 (2.9)

if SF boundary conditions are chosen [5].

3. Vertex functions

3.1 Definition

The expansions of the various actions in powers of the coupling are of the general

form

SG =
∞
∑

n=2

gn−2
0

n!

∑

x1,...,xn

V
(n)
G (x1, . . . , xn)

a1...an

µ1...µn
Aa1

µ1
(x1) . . . A

an

µn
(xn), (3.1)

Sm =
∞
∑

n=2

gn0
n!

∑

x1,...,xn

V (n)
m (x1, . . . , xn)

a1...an

µ1...µn
Aa1

µ1
(x1) . . . A

an

µn
(xn), (3.2)

SFP =
∞
∑

n=0

gn0
n!

∑

x1,...,xn,y1,y2

V
(n)
FP (x1, . . . , xn, y1, y2)

a1...an,b1,b2
µ1...µn

×Aa1
µ1
(x1) . . . A

an

µn
(xn)c̄

b1(y1)c
b2(y2), (3.3)
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where repeated Lorentz and Lie algebra indices are summed over. The time coordi-

nates are summed from 0 to T − 1 without any weight factors. All vertex functions

V
(n)
G , V

(n)
m and V

(n)
FP are required to be symmetric under permutations of the argu-

ments (x1, µ1, a1), . . . , (xn, µn, an). In the case of open-SF boundary conditions, the

vertex functions are then uniquely determined by the expansions (3.1)–(3.3).

These vertex functions also satisfy eqs. (3.1)–(3.3) if SF boundary conditions are

chosen. The actions SG, Sm and SFP actually do not explicitly refer to the boundary

conditions and only the boundary values of the fields at time x0 = 0 depend on them.

In the present context, where the vertex functions are ultimately contracted with

fields having the correct boundary values, it is therefore consistent to use the same

expressions for the vertex functions for both open-SF and SF boundary conditions.

3.2 Programs for the vertices

For the evaluation of the tree diagrams contributing to the trivializing stochastic

field, the vertex functions are required in the form

(A
(n)
G )aµ(x) = −

∑

x1,...,xn−1

V
(n)
G (x, x1, . . . , xn−1)

a,a1...an−1
µ,µ1...µn−1

× (A1)
a1
µ1
(x1) . . . (An−1)

an−1
µn−1

(xn−1), (3.4)

(A(n)
m )aµ(x) = −

∑

x1,...,xn−1

V (n)
m (x, x1, . . . , xn−1)

a,a1...an−1
µ,µ1...µn−1

× (A1)
a1
µ1
(x1) . . . (An−1)

an−1
µn−1

(xn−1), (3.5)

(A
(n)
FP )

a
µ(x) = −

∑

x1,...,xn−1,y1,y2

V
(n)
FP (x, x1, . . . , xn−1, y1, y2)

a,a1...an−1,b1,b2
µ,µ1...µn−1

× (A1)
a1
µ1
(x1) . . . (An−1)

an−1
µn−1

(xn−1)C
b1(y1)C

b2(y2), (3.6)

(C
(n)
FP )a(x) = −

∑

x1,...,xn,y

V
(n)
FP (x1, . . . , xn, x, y)

a1...an,a,b
µ1...µn

× (A1)
a1
µ1
(x1) . . . (An)

an

µn
(xn)C

b(y), (3.7)

(C
(n)

FP )
a(x) = −

∑

x1,...,xn,y

V
(n)
FP (x1, . . . , xn, y, x)

a1...an,b,a
µ1...µn

× (A1)
a1
µ1
(x1) . . . (An)

an

µn
(xn)C

b(y), (3.8)
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Fig. 1. Graphical representation of the fields (3.4)–(3.8). The open circles stand

for the source fields A1, . . . ,An, C and C (cf. ref. [1]; the powers of g0 multiplying the

vertices are omitted here).

where the fields on the right of these equations are complex source fields satisfying

the chosen boundary conditions (see fig. 1). When a vertex is to be evaluated, the

source fields are already known. The programs that compute the fields (3.4)–(3.8)

thus take as input the order n of the vertex and the addresses of the source fields.

4. Computation of the functions A
(n)
G

In order to simplify the notation, the coupling g0 is set to unity in the following. For

the reasons explained at the end of subsect. 3.1, only the case of open-SF boundary

conditions is considered from now on. The gauge potential may take values in the

complexified Lie algebra sl(N,C) of the gauge group [1].

4.1 Alternative expression for A
(n)
G

The definition of the vertex functions V
(n)
G and the field A

(n)
G imply that

(A
(n)
G )aµ(x) = −

{

∂n−1

∂t1 . . . ∂tn−1

(

∂SG

∂Aa
µ(x)

)

(

∑n−1
k=1 tkAk

)

}

t1=...=tn−1=0

. (4.1)

The expression on the right of this equation may be evaluated by running through all

unoriented plaquettes on the lattice and by collecting their contributions to the field

5



M0 M1 M2 M3
0

12

3

x

xµ

ν

x

Fig. 2. Labeling of the edges of the plaquettes in the (µ, ν)-plane. The orientation

of the associated staple matrices Ml is chosen so as to ensure that eq. (4.2) holds for

all l = 0, . . . , 3.

A
(n)
G . Let C be the plaquette loop in the (µ, ν)-plane with lower-left corner x. The

field variables and associated staple matrices on the plaquette are labeled as shown

in fig. 2. If Al denotes the gauge potential on the link number l, the contribution of

the plaquette to the gauge action may be written in a form

−w0(C)tr
{

exp{Al}Ml + exp{−Al}M
−1
l

}

+ constant, (4.2)

where the dependence of the contribution on Al is made explicit.

The derivative with respect to the gauge potential may now be worked out using

the identities

∂ exp{±Aµ(x)}

∂Aa
µ(x)

= ± exp{±Aµ(x)}J
(

±Aµ(x)
)

T a (4.3)

and

eXJ(X)Y =
∞
∑

i,j=0

1

(i+ j + 1)!
XiY Xj . (4.4)

For the contribution of the plaquette to the field A
(n)
G on the link number l, the

expression

w0(C)
∞
∑

i,j=0

1

(i+ j + 1)!

×
∂n−1

∂t1 . . . ∂tn−1
tr
{

T a(Al)
i
(

Ml − (−1)i+jM−1
l

)

(Al)
j
}

∣

∣

∣

∣

t1=...=tn−1=0

(4.5)

is thus obtained. In this and the following equations, it is understood that the gauge

potential in the trace is replaced by the sum
∑n−1

k=1 tkAk of the source fields. The

sum over i, j is effectively finite, since the summand vanishes when i+ j ≥ n.
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4.2 Multiple differentiation algebra

The differential operators in eq. (4.5) potentially generate many terms. To be able to

organize the computation efficiently, it is worth going through some further notation

and basic algebraic facts.

Let P be a subset of the index set P0 = {1, 2, . . . , n − 1}. For any differentiable

(possibly matrix-valued) function f(t) of the parameters t1, . . . , tn−1 the operator

∂P f =
{[
∏

k∈P∂tk
]

f(t)
}

t1=...=tn−1=0
(4.6)

may be defined. In particular,

∂P f = f(0) if P = ∅. (4.7)

The subsets P of P0 may be labeled by an index ranging from 0 to 2n−1 − 1 exactly

like the symmetric matrix products {. . .}s introduced in appendix B. The differen-

tiation of the link variables,

∂P exp{±Aρ(z)} =

{

(±1)p
{

(Ai1)ρ(z) . . . (Aip)ρ(z)
}

s
if P = {i1, . . . , ip} 6= ∅,

1 if P = ∅,
(4.8)

actually establishes a one-to-one correspondence between the differential operators

and the matrix products of the source fields on the link considered.

Another important formula is the Leibniz rule

∂P (fg) =
∑

Q⊂P

∂Qf ∂P\Qg (4.9)

for the differentiation of products of functions (and matrices). The number of subsets

Q of P is equal to 2|P |, where |P | denotes the number of elements of P . There are

thus that many terms in the sum (4.9) and

n−1
∑

p=0

(

n− 1

p

)

2p = 3n−1 (4.10)

products ∂Qf ∂P\Qg to be computed if all derivatives ∂P (fg) are to be calculated.
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4.3 Differentiation with respect to t1, .., tn−1

Using the Leibniz rule, eq. (4.5) may be rewritten in the form

w0(C)
∑

Q1,Q2⊂P0,Q1∩Q2=∅

1

(n− |Q2|)!

×tr
{

T a∂Q1Vl ∂Q2

(

Ml + (−1)n−|Q2|M−1
l

)

∂P0\(Q1∪Q2)Vl

}

, (4.11)

Vl =
n−1
∑

k=0

(Al)
k. (4.12)

The sums over i and j in eq. (4.5) are implicitly included in the two factors Vl, but

since

∂QVl = ∂Q(Al)
|Q| (4.13)

each of these sums actually reduces to a single term when the differential operators

are applied. For the same reason, i+ j could be replaced by n− 1− |Q2|.

The expression (4.11) may be evaluated by rewriting it in the form

w0(C)tr

{

T a
∑

P⊂P0

[

∑

Q⊂P

1

(n− |Q|)!
∂P\QVl ∂Q

(

Ml + (−1)n−|Q|M−1
l

)

]

∂P0\PVl

}

(4.14)

and by computing the sums, first the one over Q for all P ⊂ P0 and then the sum

over P . Before these sums can be performed, the matrices ∂Q
(

Ml+(−1)n−|Q|M−1
l

)

must be calculated for all Q ⊂ P0 following the lines of appendix C.

Per plaquette, and not counting multiplications by matrices proportional to the

unit matrix, the calculation requires

16
(

3n−1 − 2n + 1
)

+ 4 (n+ 1)
(

2n−2 − 1
)

(4.15)

N × N matrix multiplications to be performed. For n = 4, 6 and 8, for example,

(4.15) evaluates to 252, 3300 and 33180. These figures are quite large, but in the case

of interest, N = 3, current processor cores can do some 5×107 matrix multiplications

per second. Assuming a local lattice of size 16× 83, the time needed for all matrix

multiplications is then 0.25, 3.2 and 33 seconds, respectively.
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4.4 3-point vertex

There are two source fields in this case and many terms in the sum (4.11) cancel.

In particular, all terms where |Q2| < 2 vanish. One is then left with the term

w0(C) tr
{

T a∂P0

(

Ml −M−1
l

)}

. (4.16)

Moreover, non-zero terms are obtained only when the derivatives with respect to t1
and t2 act on different link variables in the staple matrices.

For all k > l in {0, 1, 2, 3} let

Xkl = [(A1)k , (A2)l] + [(A2)k , (A1)l] . (4.17)

In terms of these commutators

∂P0

(

M0 −M−1
0

)

= X32 +X21 +X31, (4.18)

∂P0

(

M1 −M−1
1

)

= X32 −X20 −X30, (4.19)

∂P0

(

M2 −M−1
2

)

= X10 −X30 −X31, (4.20)

∂P0

(

M3 −M−1
3

)

= X10 +X20 +X21. (4.21)

Per plaquette the calculation thus requires 24 matrix multiplication and 26 matrix

additions.

5. Computation of the functions A
(n)
m

5.1 Expansion of the action Sm

For any matrix X ∈ sl(N,C), the identities

tr {ln J(X)} =
∞
∑

n=1

Bn

nn!
tr {(AdX)n} , (5.1)

tr {(AdX)n} = −δn0 +
n
∑

k=0

(

n

k

)

(−1)ktr
{

Xk
}

tr
{

Xn−k
}

(5.2)
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hold, where B0, B1, . . . are the Bernoulli numbers. Since AdX is an antisymmetric

matrix, the odd-power terms in the series (5.1) vanish.

The action (2.3) is therefore given by

Sm = −
∑

x,µ

∑

n=2,4,...

n
∑

k=0

(−1)k
Bn

nk!(n− k)!
tr
{

(Aµ(x))
k
}

tr
{

(Aµ(x))
n−k

}

(5.3)

and the functions A
(n)
m vanish if n is odd (as in section 4, the coupling g0 is set to

unity). In the rest of this section, n is assumed to be even and positive.

5.2 Differentiation of the action

As in the case of the gauge vertices, the function A
(n)
m may be obtained through

(A(n)
m )aµ(x) = −

{

∂n−1

∂t1 . . . ∂tn−1

(

∂Sm

∂Aa
µ(x)

)

(

∑n−1
k=1 tkAk

)

}

t1=...=tn−1=0

. (5.4)

The program that computes the function for given source fields visits the links (x, µ)

one by one and sets

(A(n)
m )aµ(x) =

n
∑

k=2

(−1)k
2Bn

n(k − 1)!(n− k)!

× ∂P0

[

tr
{

T a(Aµ(x))
k−1

}

tr
{

(Aµ(x))
n−k

}]

. (5.5)

This leads to

(A(n)
m )aµ(x) =

2Bn

n

∑

P⊂P0

tr {T a∂P exp{Aµ(x)}} tr
{

∂P0\P exp{−Aµ(x)}
}

(5.6)

when the Leibniz rule is applied.

5.3 2-point vertex

In this case, there is a single non-zero term on the right of eq. (5.6) and the result

(A(2)
m )µ(x) = −

N

12
(A1)µ(x) (5.7)

is quickly obtained.
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6. Computation of the functions A
(n)
FP

6.1 Expansion of the ghost action

The ghost action (2.7) may be written in the form of a sum

SFP = −2
∑

x,µ

wµ(x)tr
{

∂µc̄(x)
[

J(Aµ(x))
−1∂µc(x) + AdAµ(x)c(x)

]}

(6.1)

over the lattice links (x, µ), where

wµ(x) =

{

1
2 if x0 = 0 and µ > 0,

1 otherwise.
(6.2)

Recalling eq. (A.13) and using the identity

(AdX)nY =

n
∑

k=0

(

n

k

)

(−1)n−kXkY Xn−k, (6.3)

the action is readily expanded in powers of the gauge potential. The function A
(n)
FP

is then obtained as usual by differentiation with respect to the gauge potential and

by applying the operator ∂P0 .

6.2 3-point vertex

The function

(A
(1)
FP)µ(x) = wµ(x)

[

∂µC(x),
1
2∂µC(x) + C(x)

]

(6.4)

is the only one to which the last term in eq. (6.1) contributes. Use has here been

made of the fact that the ghost source fields are complex fields rather than fields

with values in a Grassmann algebra.

6.3 Higher-order vertices

Since B2m+1 = 0 for m ≥ 1, all higher-order vertices with an odd number of gluon

legs vanish. In the rest of this section, n is therefore assumed to be even and positive.

Combining eqs. (6.1),(6.3) and (A.13), the expression

(A
(n)
FP )

a
µ(x) = 2wµ(x)Bn

n
∑

k=1

(−1)k

k!(n− k)!

k−1
∑

j=0

∂P0tr
{

T aAµ(x)
k−j−1
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×
[

∂µC(x)Aµ(x)
n−k∂µC(x)Aµ(x)

j + ∂µC(x)Aµ(x)
n−k∂µC(x)Aµ(x)

j
]}

(6.5)

is obtained. Setting

Vµ(x) =
n−1
∑

i=0

(Aµ(x))
i, (6.6)

the differentiation in eq. (6.5) can be carried out in two steps. First

∂PZµ(x) =
∑

Q⊂P

(−1)|Q|

|Q|!(n− |Q|)!

[

∂µC(x)∂QVµ(x)∂µC(x)∂P\QVµ(x)

+ ∂µC(x)∂QVµ(x)∂µC(x)∂P\QVµ(x)
]

(6.7)

is computed for all P ⊂ P0 and then the field

(A
(n)
FP )

a
µ(x) = wµ(x)2Bn

∑

P⊂P0

tr
{

T a∂P0\PVµ(x)∂PZµ(x)
}

. (6.8)

If well organized, the computation requires

2 · 3n−1 + (n+ 5)(2n−2 − 1) + 3 (6.9)

matrix multiplications to be done per link.

7. Computation of the functions C
(n)
FP and C

(n)

FP

7.1 3-point vertices

These vertices are given by

C
(1)
FP(x) =

3
∑

µ=0

wµ(x)∂
∗
µ

{[

(A1)µ(x),
1
2∂µC(x) + C(x)

]}

, (7.1)

C
(1)

FP(x) =
3

∑

µ=0

wµ(x)
([

(A1)µ(x), ∂µC(x)
]

− 1
2∂

∗
µ

{[

(A1)µ(x), ∂µC(x)
]})

, (7.2)
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where the expressions in the curly brackets are set to zero at x0 = −1.

7.2 Higher-order vertices

In the following, n is again assumed to be even and positive. There are n source fields

A1, . . . ,An in this case, and in the expressions below the gauge potential stands for

the linear combination
∑n

k=1 tkAk. The index set P0 accordingly gets replaced by

P1 = {1, 2, . . . , n}.

With these notational conventions, the fields to be computed are

C
(n)
FP (x) =

3
∑

µ=0

wµ(x)∂
∗
µVµ(x), Vµ(x) = ∂P1J(Aµ(x))

−1∂µC(x), (7.3)

C
(n)

FP (x) =
3

∑

µ=0

wµ(x)∂
∗
µVµ(x), Vµ(x) = ∂P1J(Aµ(x))

−1∂µC(x), (7.4)

where, by definition,

∂∗0V0(x)|x0=0 = V0(x), ∂∗0V0(x)
∣

∣

x0=0
= V0(x). (7.5)

Recalling eqs. (A.13) and (6.3), the expressions

Vµ(x) = Bn

∑

P⊂P1

∂P exp{Aµ(x)}∂µC(x)∂P1\P exp{−Aµ(x)}, (7.6)

Vµ(x) = Bn

∑

P⊂P1

∂P exp{Aµ(x)}∂µC(x)∂P1\P exp{−Aµ(x)}, (7.7)

are then obtained.

8. Gauge-fixing vertex

The gauge-fixing vertex must be included in the Feynman rules if one is interested

in the renormalized perturbation expansion of gauge-variant correlation functions.

It can also serve as probe for the gauge-invariance of the results obtained for gauge-

invariant observables.
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Unlike the other vertex functions, the gauge-fixing vertex function explicitly de-

pends on the boundary conditions. First a field F (x) with values in sl(3,C) needs to

be computed. For 0 ≤ x0 < T and open-SF boundary conditions, the field is given

by

F (x) = ∂∗µAµ(x), (8.1)

where the rule (2.5) is to be applied at x0 = 0. In the case of SF boundary conditions,

F (x)|x0=0 =
1

T 2L3

∑

y

A0(y), (8.2)

F (x)|x0>0 = (1− x0/T )F (0) + ∂∗µAµ(x). (8.3)

For both boundary conditions, it is convenient to set F (x)|x0=T = 0. The function

is thus contained in the space of infinitesimal gauge transformations and actually

coincides with the gauge-fixing function (ðA)(x) introduced in [5].

Once F (x) is computed, the gauge-fixing vertex function is obtained through

(Agf)
a
µ(x) = wµ(x)∂µF

a(x), (8.4)

the weight factor wµ(x) being given by eq. (6.2) as before.

Appendix A

A.1 Lie algebra

The Lie algebra su(N) of SU(N) may be identified with the space of complex N×N

matrices X satisfying

X† = −X, tr{X} = 0. (A.1)

With respect to an orthonormal basis

T a ∈ su(N), a = 1, . . . , N2 − 1,

tr{T aT b} = − 1
2δ

ab, (A.2)
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of such matrices, the general element X of the Lie algebra is given by XaT a with

real coefficients Xa. The structure constants fabc, defined through

[T a, T b] = fabcT c, (A.3)

are real too and totally anti-symmetric under permutations of the indices.

A.2 Adjoint representation

The representation space of the adjoint representation of su(N) is the Lie algebra

itself, i.e. the elements X of su(N) are represented by linear transformations

AdX : su(N) 7→ su(N). (A.4)

Explicitly, AdX is defined through

AdX · Y = [X,Y ] for all Y ∈ su(N). (A.5)

With respect to a basis T a the associated matrix (AdX)ab representing the trans-

formation is given by

AdX · T b = T a(AdX)ab, (A.6)

which is equivalent to

(AdX)ab = −fabcXc, (AdX · Y )
a
= fabcXbY c, (A.7)

in terms of the structure constants. In particular, (AdX)ab is an anti-symmetric

matrix.

A.3 Differential of the exponential mapping

Let X be an element of su(N). A linear mapping J(X) : su(N) 7→ su(N) may then

be defined through

J(X) · Y = e−X d

dt
eX+tY

∣

∣

∣

∣

t=0

for all Y ∈ su(N). (A.8)

J(X) is referred to as the differential of the exponential mapping. It is possible to

show that

J(X) = 1 +
∞
∑

k=1

(−1)k

(k + 1)!
(AdX)k, (A.9)
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which may symbolically be written as

J(X) =
1− e−AdX

AdX
. (A.10)

The associated matrix J(X)ab, representing the transformation through

J(X) · T b = T aJ(X)ab, (A.11)

is real and satisfies

J(X)T = J(−X), J(X)−1 − J(−X)−1 = AdX. (A.12)

In particular, the expansion

J(X)−1 = 1 +
∞
∑

k=1

(−1)k
Bk

k!
(AdX)k, (A.13)

B1 = − 1
2 , B2 = 1

6 , B3 = 0, . . . (the Bernoulli numbers), (A.14)

has no odd terms beyond the first order term.

Appendix B

Let X1, . . . , Xm be complex square matrices and i1, . . . , ip a sequence of p pairwise

different integers in the range 1, . . . ,m. Define the symmetric product

{

Xi1 . . . Xip

}

s
=

1

p!

∑

σ∈Sp

Xiσ(1)
. . . Xiσ(p)

, (B.1)

where Sp denotes the symmetric group of p elements. There are

m
∑

p=1

(

m

p

)

= 2m − 1 (B.2)

symmetric products of this kind.
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The products can be computed recursively through

{

Xi1 . . . Xip

}

s
=

1

p

p
∑

k=1

Xik

{

Xi1 . . . Xik−1
Xik+1

. . . Xip

}

s
. (B.3)

For the computation of all symmetric products, the recursion requires

m
∑

p=2

p

(

m

p

)

= m
(

2m−1 − 1
)

(B.4)

matrix multiplications to be performed.

Symmetric matrix products may be labeled by an integer i in the range [1, 2m−1].

If

i = bmbm−1 . . . b1 (B.5)

is the binary representation of i through the bits b1, . . . , bm, the factors Xk included

in the associated symmetric product (B.1) are the ones where bk = 1. The number

of the factors is thus equal to the bit count of the index i.

Appendix C

The matrices

∂Q
(

Ml + (−1)n−|Q|M−1
l

)

(C.1)

can be computed in two steps. First the matrices

∂PYkl = (−1)|P |
∑

R⊂P

∂R exp{Ak} ∂P\R exp{Al} (C.2)

are computed for (k, l) ∈ {(0, 1), (1, 0), (2, 3), (3, 2)}. In the second step, the products

∂Q
(

M0 + (−1)n−|Q|M−1
0

)

=

∑

P⊂Q

{

∂Q\P exp{A1} ∂PY32 + (−1)n∂PY23 ∂Q\P exp{A1}
}

, (C.3)
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∂Q
(

M1 + (−1)n−|Q|M−1
1

)

=

∑

P⊂Q

{

∂PY32 ∂Q\P exp{A0} + (−1)n∂Q\P exp{A0} ∂PY23

}

, (C.4)

∂Q
(

M2 + (−1)n−|Q|M−1
2

)

=

∑

P⊂Q

{

∂Q\P exp{A3} ∂PY10 + (−1)n∂PY01 ∂Q\P exp{A3}
}

, (C.5)

∂Q
(

M3 + (−1)n−|Q|M−1
3

)

=

∑

P⊂Q

{

∂PY10 ∂Q\P exp{A2}+ (−1)n∂Q\P exp{A2} ∂PY01

}

, (C.6)

are evaluated.
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[5] M. Lüscher, Normalization of the gradient-flow coupling in LQCD, notes, January

2014.

18


