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Andersson trees are simple and easy to implement balanced binary search trees
that are based on the foundations of red black trees. Consequently, Andersson
trees  have  similar  performance  and  structuring  properties  as  red  black  trees
without the difficult  implementation. Red black trees are an abstraction of the
symmetric  binary B-tree, which is  a clever abstraction of a B-tree of order 4.
Andersson trees are a simplification of the symmetric binary B-tree that use a
B-tree of order 3 to remove several unpleasant cases in the implementation. If
the  last  two  sentences  meant  absolutely  nothing  to  you,  that's  okay.  This
background isn't  necessary to understand Andersson trees or implement them
well. Andersson trees were introduced by Arne Andersson in his paper “Balanced
Search Trees Made Simple”.  They were further studied by a few people, most
notably  Mark  Allen  Weiss,  who  discussed  them  briefly  in  his  books  on  data
structures and algorithm analysis.

This  tutorial  will  cover everything that they did and more.  Personally,  I  found
Arne's paper to be somewhat incomplete and Mark's descriptions to add very little
(and  nothing  that  could  not  be  easily  gleaned  from  Arne's  paper).  So  the
intention of this tutorial is to cover Andersson trees more thoroughly and with
practical implementations in mind. I will introduce the same implementation that
both Andersson and Weiss described as well  as several  other implementations
that I believe simplify the algorithms by using more conventional methods. I will
also introduce a non-recursive implementation which has sadly been missing from
descriptions and implementations of the Andersson tree.

Necessity

The current sad state of affairs in the world today is that efficient algorithms and
data structures are not used in production code. I often see the dreaded bubble
sort in real world applications, when the only acceptable place for bubble sort is
as an introduction to sorting that should be forgotten shortly after understanding
how it works. I also see basic binary search trees occasionally, if the author of the
code  was  “working  with  performance  in  mind”.  Of  course,  in  every  case  the
expected  input  included  degenerate  cases,  and  a  balanced binary  search  tree
would have been a better choice if one really had performance in mind. This is
one of the better cases. More often I see linked lists and arrays where balanced
trees would have been far superior.

I blame two things for this problem. First, the overly clever armchair computer
scientists  with  a  PhD  in  mathematics  and  only  a  vague  idea  that  not  every
programmer is as brilliant as they are. These people devise beautiful works of art
that are theoretically optimal in both time and space, but in practice are virtually
impossible  to  understand  for  most  of  the  world's  programmers.  In  practice,
optimal  time  and  space  is  nice,  but  often  not  worth  the  cost  of  initial
implementation  and  subsequent  maintenance,  not  to  mention  subtle  bugs.  I
further blame these people because in their papers and reports on their creations,
they invariably seem to forget that operations such as deletion are neither so
trivial nor so unimportant as to be an “exercise for the reader”. Especially when
deletion is almost always the most complicated and difficult operation by far.

Second, I  blame teachers for failing to emphasize the practical  need for good
algorithms  and  data  structures.  I  also  blame  them  for  showing  off  their
intelligence instead of stripping away complexity and bringing the concepts down
to a level that their students will be able to follow more easily. If a CS student
doesn't understand that a data structure is important and doesn't understand the
concepts of the data structure, that student is  highly unlikely to use the data
structure out in the real world. As a result, we see sub-par applications that could
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be improved drastically with nothing more than a better choice of algorithms and
data structures.

Andersson trees bring balanced binary search trees down to the masses by taking
a complicated and difficult data structure and peeling back the complexity until
the only thing left is an easy to understand and easy to implement balanced tree.
Well, enough of my ranting. Let's take a look at the concepts.

Concept

A  balanced  binary  search  tree  is  easy  to  understand,  even  if  the  traditional
algorithms to implement one are not. A balanced binary search tree is simply a
binary search tree where every path is never much shorter the longest path. In
other words, a balanced tree guarantees that every path is logarithmic. The most
common  balanced  trees  ensure  this  by  keeping  balance  information  in  every
node, such as the difference in  height of  the left  and right  subtrees.  Another
common abstraction  is  to  view one  or  more  nodes  as  pseudo-nodes,  thereby
using a binary search tree to fake a multi-way search tree. This is the concept
behind red-black trees. Removing the red black abstraction and simply looking at
nodes as pseudo-nodes with two, three, or four links, you can then consider “red”
links as being horizontal and “black” links as being vertical. Horizontal links create
a single pseudo-node and vertical links connect two pseudo-nodes. Consider the
following binary search tree:

         4
    /         \
   2           10
  / \       /      \
 1   3     6         12
          / \       /  \
         5   8    11    13
            / \
           7   9

By converting 4 and 10 into a single node, and 6 and 8 into a single node, you
have the following 3-way tree:

     (4-------------10)
    /        |         \
   2      (6---8)       12
  / \     /  | \      /  \
 1   3   5   7   9   11    13

To view this 3-way tree as a binary search tree of pseudo-nodes, simply use a
flag or some other method to signify that a link is horizontal. For example, by
supplying each node with a level, where leaves are level 1, two nodes that are
linked together with the same level represent a single pseudo-node:

               4,3
        /               \
     2,2                 10,3
    /   \            /          \
 1,1     3,1      6,2            12,2
                 /   \          /    \
              5,1     8,2   11,1      13,1
                     /   \
                  7,1     9,1

Because 4 and 10 have the same level and are directly linked, they are viewed as
a single node even though a binary search tree does not allow more than a single
item and two links per node. This pseudo-node has two items and three links. 6
and 12 also have the same level, but they are not directly linked together, so they
are  not  viewed  as  a  single  pseudo-node.  The  three  trees  shown  above  are
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Andersson trees because there are no horizontal left links. Let's look at the rules
for an Andersson tree:

1) Every path contains the same number of pseudo-nodes.
2) A left child may not have the same level as its parent.
3) Two right children with the same level as the parent are not allowed.

The last two rules can be written in with more abstraction because it is possible,
though more complicated, to implement an Andersson tree without using levels
as the balance information:

2) Horizontal left links are not allowed.
3) Two consecutive horizontal links are not allowed.

This concept is different from a red black tree which is based on the same idea
because a red black tree allows left  horizontal left  links. The result  is  that an
Andersson tree fakes a B-tree of order 3 and a red black tree fakes a B-tree of
order 4. The good news is that an Andersson tree is vastly simpler because if left
horizontal links are allowed, there are manny different patterns to look for. With a
red black  tree,  the  following shapes must  be  considered to  maintain  balance,
resulting in several complicated cases:

 *       *     *     *       *       *   *
  \     /     / \     \     /       /     \
   *   *     *   *     *   *       *       *
                      /     \     /         \
                     *       *   *           *

With an Andersson tree, those seven shapes are reduced to two, and the cases
required to maintain balance are both small in number and simple:

 *     *
  \     \
   *     *
          \
           *

To maintain balance in an Andersson tree, you need to test the levels and make
sure that none of the rules are broken. Because there are only two cases to test
for, they can be broken into two operations called skew and split. A skew removes
left horizontal links by rotating right at the parent. No changes are needed to the
levels after a skew because the operation simply turns a left horizontal link into a
right horizontal link:

         d,2               b,2
        /   \             /   \
     b,2     e,1  -->  a,1     d,2
    /   \                     /   \
 a,1     c,1               c,1     e,1

Unfortunately, a skew could create two consecutive right horizontal links. A split
removes consecutive horizontal links by rotating left and increasing the level of
the parent. A split needs to change the level of a single node because if a skew is
made first, a split will negate the changes made by doing the inverse of a skew.
Therefore, a proper split will force the new parent to a higher level:

     b,2                     d,3
    /   \                   /   \
 a,1     d,2     -->     b,2     e,2
        /   \           /   \
     c,1     e,2     a,1     c,1

For any rebalancing operation in an Andersson tree, you only need to follow the
right path of the tree and skew, then do the same thing and split. This implies
that skew and split need to be implemented recursively, which is both doable and
trivial if you know how to perform a rotation:
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 1 struct jsw_node *skew ( struct jsw_node *root )
 2 {
 3   if ( root->level != 0 ) {
 4     if ( root->link[0]->level == root->level ) {
 5       struct jsw_node *save = root;
 6       root = root->link[0];
 7       save->link[0] = root->link[1];
 8       root->link[1] = save;
 9     }
10
11     root->link[1] = skew( root->link[1] );
12   }
13
14   return root;
15 }
16
17 struct jsw_node *split ( struct jsw_node *root )
18 {
19   if ( root->link[1]->link[1]->level == root->level && root->level != 0 ) {
20     struct jsw_node *save = root;
21     root = root->link[1];
22     save->link[1] = root->link[0];
23     root->link[0] = save;
24     ++root->level;
25     root->link[1] = split ( root->link[1] );
26   }
27
28   return root;
29 }

It might seem at first glance that a recursive skew and split all the way down the
tree  would  be  inefficient,  but  notice  that  both  skew and split  are  conditional.
Structural  changes  are  only  made  if  the  balancing  rules  are  violated.  Each
rotation  serves  to  bring  the  tree  more  into  balance,  so  it  makes  sense  that
rotations  will  not  be  made  as  often  as  it  originally  appears.  In  practice,  for
insertions an Andersson tree will only make a few more rotations than a red black
tree, but for deletions an Andersson tree will  probably make about 25% more
rotations than a red black tree.  Both of  these are often acceptable when you
consider that even though more rotations are made, the algorithms are simpler
and faster than red black algorithms. So it all evens out rather nicely.

Skew  and  split  can  also  be  implemented  non-recursively  as  standalone
operations. This requires more work in the deletion algorithm because both skew
and split need to be called more than once for each node. This is a slightly more
efficient implementation because only one function call is made at a time rather
than  stacking  them up  with  recursion.  The  implementation  is  identical  to  the
recursive implementation except without the recursive calls:

 1 struct jsw_node *skew ( struct jsw_node *root )
 2 {
 3   if ( root->link[0]->level == root->level && root->level != 0 ) {
 4     struct jsw_node *save = root->link[0];
 5     root->link[0] = save->link[1];
 6     save->link[1] = root;
 7     root = save;
 8   }
 9
10   return root;
11 }
12
13 struct jsw_node *split ( struct jsw_node *root )
14 {
15   if ( root->link[1]->link[1]->level == root->level && root->level != 0 ) {
16     struct jsw_node *save = root->link[1];
17     root->link[1] = save->link[0];
18     save->link[0] = root;
19     root = save;
20     ++root->level;

Eternally Confuzzled - Andersson Tree Tutorial http://www.eternallyconfuzzled.com/tuts/datastruc...

4 of 13 11/10/14 09:01



21   }
22
23   return root;
24 }

A  third  alternative  is  to  write  skew  and  split  inline  and  avoid  function  calls
altogether. My Andersson tree library uses this approach by implementing skew
and split as macros. However, this is strictly an implementation optimization, and
the rest of this tutorial will  conveniently ignore the inline approach in favor of
easier to understand solutions.

 1 #define skew(t) do {                                         \
 2   if ( t->link[0]->level == t->level && root->level != 0 ) { \
 3     struct jsw_node *save = t->link[0];                      \
 4     t->link[0] = save->link[1];                              \
 5     save->link[1] = t;                                       \
 6     t = save;                                                \
 7   }                                                          \
 8 } while(0)
 9
10 #define split(t) do {                                                 \
11   if ( t->link[1]->link[1]->level == t->level && root->level != 0 ) { \
12     struct jsw_node *save = t->link[1];                               \
13     t->link[1] = save->link[0];                                       \
14     save->link[0] = t;                                                \
15     t = save;                                                         \
16     ++t->level;                                                       \
17   }                                                                   \
18 } while(0)

Insertion

To simplify the insertion and deletion algorithms, Andersson trees typically use a
sentinel node to terminate the nodes rather than null pointers. This way there is
no need to test for a null pointer and the sentinel can be given a level lower than
all other levels. All in all it makes for simpler algorithms, so I recommend it and
will assume a sentinel in every implementation for this tutorial. The sentinel will
simply be a global pointer to a node called nil, and must be fully initialized before
any other node in the tree:

 1 struct jsw_node {
 2   int data;
 3   int level;
 4   struct jsw_node *link[2];
 5 };
 6
 7 struct jsw_node *nil;
 8
 9 int jsw_init ( void )
10 {
11   nil = malloc ( sizeof *nil );
12
13   if ( nil == NULL )
14     return 0;
15
16   nil->level = 0;
17   nil->link[0] = nil->link[1] = nil;
18
19   return 1;
20 }

Since leaf nodes have a level of 1, nil will have a level of 0 so that it does not
adversely affect how restructuring algorithms work. The sentinel must also point
to itself for the left and right links. That way we can walk as much as we want
beyond a leaf and still have predictable behavior.
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Also used will be a function to create and initialize a single node. Technically this
isn't needed since that code can be written inline, but it makes the algorithms
shorter and seemingly simpler by factoring out unnecessary clutter:

 1 struct jsw_node *make_node ( int data, int level )
 2 {
 3   struct jsw_node *rn = malloc ( sizeof *rn );
 4
 5   if ( rn == NULL )
 6     return NULL;
 7
 8   rn->data = data;
 9   rn->level = level;
10   rn->link[0] = rn->link[1] = nil;
11
12   return rn;
13 }

With these preliminaries out of the way, we can look at the recursive insertion
algorithm described by Andersson and Weiss. The bad news is that it's somewhat
anticlimactic.  The  good  news  is  that  it's  somewhat  anticlimactic,  because  the
algorithm is insertion for a basic binary search tree with skew and split called on
the return path. It's bad news because we're talking about a balanced tree, and
everyone expects long and smart looking code for a balanced tree. It's good news
because this is about as simple as it gets for a balanced tree, and looking smart
gets old after you have to implement and debug it a few times:

 1 struct jsw_node *jsw_insert ( struct jsw_node *root, int data )
 2 {
 3   if ( root == nil )
 4     root = make_node ( data, 1 );
 5   else {
 6     int dir = root->data < data;
 7     root->link[dir] = jsw_insert ( root->link[dir], data );
 8     root = skew ( root );
 9     root = split ( root );
10   }
11
12   return root;
13 }

A new node is always placed at the bottom of the tree, so it will always be given a
level of 1. Remember that nil has a level of 0, so skew and split won't be affected
at the leaves because 0 is only one less than 1 (but you already knew that).
Notice that the return value of skew and split is being assigned to root, which
suggests that I'm using one of the functions rather than the macro. The macro
would  not  require  assignment  of  a  “return  value”.  Also  notice  that  either  the
recursive or the non-recursive version of skew and split would work equally well
here. The difference is only noticeable in the deletion algorithm.

Let's walk through the building of an Andersson tree. First we will insert 0 into an
empty tree. This hits the first case immediately and a new node is inserted with a
level of 1. Then 1 is inserted. On the way back up, neither skew nor split will do
anything because there is only one horizontal link, and it's a right link. Then we
insert 2 and the fun begins. Once again, skew does nothing because we only have
right horizontal links, but because there are two right horizontal links in a row,
split must perform a left rotation and increase the level of 1:

 0,1            1,2
  \            /   \
   1,1   -> 0,1     2,1
    \
     2,1

Now 3 is added and nothing is done because none of the rules are broken. 1 no
longer has a right horizontal link, but now 2 does have one, so the next insertion
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of 4 will violate the rule for consecutive right horizontal links and must be split:

     1,2                    1,2
    /   \                  /   \
 0,1     2,1            0,1     3,2
            \        ->        /   \
             3,1            2,1     4,1
                \
                 4,1

Adding  5  does  nothing,  but  6  will  violate  the  same  rule  (notice  a  trend  for
ascending value insertion?) and a split is required. But this time a single split will
not be enough because splitting 4, 5, and 6 will cause 5 to be increased to level
2, resulting in consecutive horizontal links at 1, 3, and 5:

     1,2                        1,2
    /   \                      /   \
 0,1     3,2                0,1     3,2
        /   \                      /   \
     2,1     4,1         ->     2,1     5,2
                \                      /   \
                 5,1                4,1     6,1
                    \
                     6,1

So the rebalancing must propagate up the tree and split at 1:

     1,2                           3,3
    /   \                      /         \
 0,1     3,2                1,2           5,2
        /   \        ->    /   \         /   \
     2,1     5,2        0,1     2,1   4,1     6,1
            /   \
         4,1     6,1

In this example there was never a skew because we were only inserting values in
ascending order. Ascending order is a degenerate case, and as you can see, the
end result was quite balanced. However, let's look at another degenerate case
that will force a skew, descending order insertion. We start with adding 6 to an
empty tree, and nothing happens, then 5 is inserted. At this point we have a left
horizontal link because both 6 and 5 have a level of 1, so a skew is required to
turn the left horizontal link into a right horizontal link:

     6,1    5,1
    /    ->    \
 5,1            6,1

Now we insert 4, which creates another horizontal left link, so another skew is
required. But the skew creates consecutive right horizontal links, so a split needs
to fix that. This is why skew is called before split, because a skew can create a
case that requires a split:

     5,1        4,1                5,2
    /   \    ->    \        ->    /   \
 4,1     6,1        5,1        4,1     6,1
                       \
                        6,1

This is an interesting case because it seems to unnecessarily rotate twice. Can
you think of a way to implement an Andersson tree where this case could simply
increase the level of 5 and avoid the two rotations? Moving on, we add 3 and
skew, but no split is needed:

         5,2            5,2
        /   \    ->    /   \
     4,1     6,1    3,1     6,1
    /                  \
 3,1                    4,1
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When we add 2, however, both a skew and a split is required:

         5,2            5,2                5,2
        /   \          /   \              /   \
     3,1     6,1 -> 2,1     6,1 ->     3,2     6,1
    /   \              \              /   \
 2,1     4,1            3,1        2,1     4,1
                           \
                            4,1

This  is  still  not  enough  because  now  5  has  a  left  horizontal  link.  So  the
rebalancing must propagate and skew again to restore balance:

         5,2            3,2
        /   \          /   \
     3,2     6,1 -> 2,1     5,2
    /   \                  /   \
 2,1     4,1            4,1     6,1

A lot of people try to avoid recursion, for many good reasons. The good news is
that an Andersson tree is really no harder to implement iteratively than a basic
binary search tree. Here is the code for non-recursive insertion into an Andersson
tree:

 1 struct jsw_node *jsw_insert ( struct jsw_node *root, int data )
 2 {
 3   if ( root == nil )
 4     root = make_node ( data, 1 );
 5   else {
 6     struct jsw_node *it = root;
 7     struct jsw_node *up[32];
 8     int top = 0, dir = 0;
 9
10     for ( ; ; ) {
11       up[top++] = it;
12       dir = it->data < data;
13
14       if ( it->link[dir] == nil )
15         break;
16
17       it = it->link[dir];
18     }
19
20     it->link[dir] = make_node ( data, 1 );
21
22     while ( --top >= 0 ) {
23       if ( top != 0 )
24         dir = up[top - 1]->link[1] == up[top];
25
26       up[top] = skew ( up[top] );
27       up[top] = split ( up[top] );
28
29       if ( top != 0 )
30         up[top - 1]->link[dir] = up[top];
31       else
32         root = up[top];
33     }
34   }
35
36   return root;
37 }

This implementation simulates the down and up movement of recursion by saving
the path down the tree on a stack and then popping nodes off of the stack and
rebalancing  until  the  stack  is  empty.  Care  must  be  taken  to  ensure  that  the
parent nodes properly reset their children if a rotation is made, and that the root
of the tree is updated at the bottom of the stack. Aside from these subtle issues,
the code is straightforward and surprisingly simple for a balanced tree.
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Deletion

Removing a node from an Andersson tree is, not surprisingly, more difficult than
insertion.  Fortunately,  it's  not  much  more  difficult  than  deletion  from a  basic
binary  search  tree.  One of  the  most  important  adjustments  that  needs  to  be
made is to decrease the level of a node is there is a break in the values. For
example, if a node has a level of 4 then if its child has a lower level, that level
must  be  3.  Then  a  recursive  skew  and  split  is  performed.  Let's  look  at  my
recursive code for deletion, and then step through an example:

 1 struct jsw_node *jsw_remove ( struct jsw_node *root, int data )
 2 {
 3   if ( root != nil ) {
 4     if ( data == root->data ) {
 5       if ( root->link[0] != nil && root->link[1] != nil ) {
 6         struct jsw_node *heir = root->link[0];
 7
 8         while ( heir->link[1] != nil )
 9           heir = heir->link[1];
10
11         root->data = heir->data;
12         root->link[0] = jsw_remove ( root->link[0], root->data );
13       }
14       else
15         root = root->link[root->link[0] == nil];
16     }
17     else {
18       int dir = root->data < data;
19       root->link[dir] = jsw_remove ( root->link[dir], data );
20     }
21   }
22
23   if ( root->link[0]->level < root->level - 1
24     || root->link[1]->level < root->level - 1 )
25   {
26     if ( root->link[1]->level > --root->level )
27       root->link[1]->level = root->level;
28
29     root = skew ( root );
30     root = split ( root );
31   }
32
33   return root;
34 }

This is identical to recursive deletion from a basic binary search tree with the
extra test for a break in the levels. If there's no break then there was no deletion
and no rebalancing needs to be done, which is why skew and split are inside the
conditional test along with the actual code to decrease a level. Let's look at a step
by step example of this algorithm on the final  tree of the ascending insertion
example:

            3,3
        /         \
     1,2           5,2
    /   \         /   \
 0,1     2,1   4,1     6,1

Removing 0 will cause a break in the levels between 1 and nil, so the level of 1 is
decreased to 1. Then the break is between 1 and 3, so the level of 3 is decreased
to 2.  This  is  a  simple case because no skews or  splits  are needed to restore
balance:

        3,2
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    /         \
 1,1           5,2
    \         /   \
     2,1   4,1     6,1

Now we will remove 3:

        2,2
    /         \
 1,1           5,2
              /   \
           4,1     6,1

3 is replaced with its inorder predecessor 2, and the node for 2 is replaced with
nil. In this case, no rebalancing is required at all because there is no break in the
levels and the tree remains balanced. However, when we remove 1, this creates a
break between 2 and nil. The level of 2 is decreased to 1 along with the level of
5:

 2,2            2,1
    \              \
     5,2     ->     5,1
    /   \          /   \
 4,1     6,1    4,1     6,1

This is a somewhat nasty case that shows why skew and split need to be called
recursively. If skew is not recursive, the violation at 5 would not be fixed. But
since skew and split are recursive, everything works out nicely:

 2,1            2,1                    4,2
    \              \                  /   \
     5,1     ->     4,1         -> 2,1     5,1
    /   \              \                      \
 4,1     6,1            5,1                    6,1
                           \
                            6,1

In reality, only 3 skews down the tree are needed at most, and only 2 splits.
Why?  Because  the  worst  possible  imbalance  after  a  deletion  would  be  the
following structure (only relevant nodes shown):

 2,1
    \
     5,1
    /   \
 3,1     6,1
    \       \
     4,1     7,1

To fix this, a skew is made at 2, then at 5, and at 5 again:

 2,1                2,1                    2,1
    \                  \                      \
     5,1                3,1                    3,1
    /   \        ->        \            ->        \
 3,1     6,1                5,1                    4,1
    \       \              /   \                      \
     4,1     7,1        4,1     6,1                    5,1
                                   \                      \
                                    7,1                    6,1
                                                              \
                                                               7,1

This result is just a tad unbalanced, but two splits will fix it. The first split is at 2,
then the second is at 4:

 2,1                            3,2                        3,2
    \                          /   \                      /   \
     3,1                    2,1     4,1                2,1     5,2
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        \                ->            \            ->        /   \
         4,1                            5,1                4,1     6,1
            \                              \                          \
             5,1                            6,1                        7,1
                \                              \
                 6,1                            7,1
                    \
                     7,1

With all of this in mind, the non-recursive versions of skew and split can be used
as long as three calls to skew and two calls to split are made:

 1 struct jsw_node *jsw_remove ( struct jsw_node *root, int data )
 2 {
 3   if ( root != nil ) {
 4     if ( data == root->data ) {
 5       if ( root->link[0] != nil && root->link[1] != nil ) {
 6         struct jsw_node *heir = root->link[0];
 7
 8         while ( heir->link[1] != nil )
 9           heir = heir->link[1];
10
11         root->data = heir->data;
12         root->link[0] = jsw_remove ( root->link[0], root->data );
13       }
14       else
15         root = root->link[root->link[0] == nil];
16     }
17     else {
18       int dir = root->data < data;
19       root->link[dir] = jsw_remove ( root->link[dir], data );
20     }
21   }
22
23   if ( root->link[0]->level < root->level - 1
24     || root->link[1]->level < root->level - 1 )
25   {
26     if ( root->link[1]->level > --root->level )
27       root->link[1]->level = root->level;
28
29     root = skew ( root );
30     root->link[1] = skew ( root->link[1] );
31     root->link[1]->link[1] = skew ( root->link[1]->link[1] );
32     root = split ( root );
33     root->link[1] = split ( root->link[1] );
34   }
35
36   return root;
37 }

All of this is fun, and in my opinion this recursive version is easy to understand,
but both Andersson and Weiss described a more efficient variation of the deletion
algorithm. Based on earlier work by Andersson, a minimal comparison tree search
is  used  rather  than  the  usual  three  way  comparison.  The  trick  is  to  use  two
variables that point to the heir whose value will replace the deleted item, and the
item  to  be  replaced.  The  code  is  simple,  but  unconventional  enough  to  be
confusing:

 1 struct jsw_node *jsw_remove ( struct jsw_node *root, int data )
 2 {
 3   static struct jsw_node *item, *heir;
 4
 5   /* Search down the tree */
 6   if ( root != nil ) {
 7     int dir = root->data < data;
 8
 9     heir = root;
10     if ( dir == 0 )
11       item = root;
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12
13     root->link[dir] = jsw_remove ( root->link[dir], data );
14   }
15
16   if ( root == heir ) {
17     /* At the bottom, remove */
18     if ( item != nil && item->data == data ) {
19       item->data = heir->data;
20       item = nil;
21       root = root->link[1];
22     }
23   }
24   else {
25     /* Not at the bottom, rebalance */
26     if ( root->link[0]->level < root->level - 1
27       || root->link[1]->level < root->level - 1 )
28     {
29       if ( root->link[1]->level > --root->level )
30         root->link[1]->level = root->level;
31
32       root = skew ( root );
33       root->link[1] = skew ( root->link[1] );
34       root->link[1]->link[1] = skew ( root->link[1]->link[1] );
35       root = split ( root );
36       root->link[1] = split ( root->link[1] );
37     }
38   }
39
40   return root;
41 }

When we think of efficiency, recursion typically doesn't come to mind. Of course,
in a practical implementation it really depends on what is needed, but I always
like to have both recursive and non-recursive options when working with binary
search  trees.  So  I  came  up  with  a  quick  non-recursive  version  of  deletion.
Amazingly enough, it corresponds to deletion in a basic binary search tree, with
only a small amount of balancing and bookkeeping code added:

 1 struct jsw_node *jsw_remove ( struct jsw_node *root, int data )
 2 {
 3   if ( root != nil ) {
 4     struct jsw_node *it = root;
 5     struct jsw_node *up[32];
 6     int top = 0, dir = 0;
 7
 8     for ( ; ; ) {
 9       up[top++] = it;
10
11       if ( it == nil )
12         return root;
13       else if ( data == it->data )
14         break;
15
16       dir = it->data < data;
17       it = it->link[dir];
18     }
19
20     if ( it->link[0] == nil || it->link[1] == nil ) {
21       int dir2 = it->link[0] == nil;
22
23       if ( --top != 0 )
24         up[top - 1]->link[dir] = it->link[dir2];
25       else
26
27         root = it->link[1];
28     }
29     else {
30       struct jsw_node *heir = it->link[1];
31       struct jsw_node *prev = it;
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32
33       while ( heir->link[0] != nil ) {
34         up[top++] = prev = heir;
35         heir = heir->link[0];
36       }
37
38       it->data = heir->data;
39       prev->link[prev == it] = heir->link[1];
40     }
41
42     while ( --top >= 0 ) {
43       if ( top != 0 )
44         dir = up[top - 1]->link[1] == up[top];
45
46       if ( up[top]->link[0]->level < up[top]->level - 1
47         || up[top]->link[1]->level < up[top]->level - 1 )
48       {
49         if ( up[top]->link[1]->level > --up[top]->level )
50           up[top]->link[1]->level = up[top]->level;
51
52         up[top] = skew ( up[top] );
53         up[top]->link[1] = skew ( up[top]->link[1] );
54         up[top]->link[1]->link[1] = skew ( up[top]->link[1]->link[1] );
55         up[top] = split ( up[top] );
56         up[top]->link[1] = split ( up[top]->link[1] );
57       }
58
59       if ( top != 0 )
60         up[top - 1]->link[dir] = up[top];
61       else
62         root = up[top];
63     }
64   }
65
66   return root;
67 }

Conclusion

Andersson trees are a very simple alternative to the more traditional balanced
binary search trees.  The performance properties are very close to that of  red
black trees, and the effort required in implementing them is minimal for anyone
who is comfortable writing basic binary search trees. This tutorial discussed the
background and concepts of Andersson trees, walked through several examples of
how the rebalancing operations work, and looked at several variations of working
code.
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