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1. Introduction

The Yang–Mills gradient flow provides interesting new opportunities for step-scaling

studies of QCD and related theories [1,2]. Step scaling in lattice QCD requires a

renormalized gauge coupling to be introduced that runs with the size of the lattice

[3]. The couplings based on the gradient flow considered so far [4–6] are essentially all

the same, but were proposed to be used together with various boundary conditions

for the gauge and quark fields (periodic, Schrödinger functional (SF) and so-called

twisted periodic boundary conditions).

In this note, SF boundary conditions are chosen, as in ref. [5], or open-SF boundary

conditions, which may allow the infamous topology-freezing problem in numerical

simulations to be bypassed [7,8]. The goal in both cases is to analytically compute

the gradient-flow coupling to leading order of weak-coupling perturbation theory.

2. Lattice theory

The quark fields contribute to the gradient-flow coupling only at one-loop order of

perturbation theory. Their presence is therefore ignored from the beginning and only

the pure-gauge part of the theory is specified. For simplicity, the lattice spacing is

set to unity and the gauge group is taken to be SU(N).
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2.1 Lattice geometry and gauge field

The theory is set up on a hypercubic lattice of points x with Cartesian coordinates

(x0, x1, x2, x3), xµ ∈ Z,

0 ≤ x0 ≤ T, 0 ≤ xk < L (k = 1, 2, 3), (2.1)

where T and L are the lattice sizes in the time and space directions. In the space di-

rections, periodic boundary conditions are imposed, i.e. the points x and x+k̂ mod L

(where µ̂ is the unit vector in direction µ) are considered to be nearest neighbours.

The lattice is not periodically closed in time and instead has two boundaries, one at

time 0 and the other at time T .

As usual, the gauge field is an assignment of matrices U(x, µ) ∈ SU(3) to the links

(x, µ) on the lattice, where x runs over all points in the range (2.1), µ = 0, . . . , 3 if

x0 < T and µ = 1, 2, 3 if x0 = T . The active and static link variables U(x, µ) are,

respectively, those integrated over in the QCD functional integral and the ones that

have fixed values (see subsects. 2.3 and 2.4).

2.2 Gauge action

Let S0 and S1 be the sets of oriented plaquette and double-plaquette loops on the

lattice (see fig. 1). The gauge actions considered are of the form

SG =
1

g20

1
∑

k=0

ck
∑

C∈Sk

wk(C) tr{1− U(C)}, (2.2)

where U(C) denotes the ordered product of the link variables around the loop C.
The weight factor wk(C) depends on the choice of boundary conditions and differs

from unity only near the boundaries of the lattice (see below).

In order to ensure the correct normalization of the bare coupling g0, the coefficients

ck must be such that

c0 + 8c1 = 1. (2.3)

Moreover, the constraint c0 > 0 is imposed as otherwise there may be fields with

lowest action which are not locally pure gauge configurations [9].
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Fig. 1. Plaquette and planar double-plaquette loops in a (µ, ν)–plane of the lattice.

The sums in eq. (2.2) run over all these loops, where loops differing by their orientation

are considered to be different.

2.2 Schrödinger functional boundary conditions

The spatial link variables residing on the boundaries at time 0 and T are all static

in this case and are taken to be of the form [10]

U(x, k) =

{

exp{Ck} if x0 = 0,

exp{C ′
k} if x0 = T ,

(2.4)

Ck =
i

Nk
diag(φ1, . . . , φN ), C ′

k =
i

Nk
diag(φ′

1, . . . , φ
′
N ), (2.5)

for k = 1, 2, 3. Subject to the constraints

N
∑

j=1

φj =
N
∑

j=1

φ′
j = 0, (2.6)

the angles φj and φ′
j can be chosen arbitrarily.

For the form of the gauge action near the boundaries of the lattice, two choices,

referred to as A and B, were proposed by Aoki, Frezzotti and Weisz [11]. Here

another choice is made, which combines the advantages of choice A and B [12].

The sets of loops C summed over in the gauge action eq. (2.2) includes all loops

that are fully contained in the range 0 ≤ x0 ≤ T of time. In addition, the time-like

double-plaquette loops that cross the boundaries of the lattice as shown in fig. 2 are

included in the sum, the associated Wilson loops U(C) being given by the square of

the plaquette loops on the inner side of the boundary.

In view of the boundary conditions (2.4),(2.5), the space-like loops at time 0 and

T do not contribute to the gauge action and their weights wk(C) can therefore be

3



xk

x

0

0

Fig. 2. At the boundaries of the lattice where SF boundary conditions are imposed,

the double-plaquette loops C that cross the boundary are included in the gauge action

(2.2), with weight w1(C) = 1/2 and U(C) set to the product of the link variables

around the loop shown on the right, which winds twice around the inner plaquette.

left unspecified. For the plaquette loops, the weights are then

w0(C) =
{

cG if C has exactly one link on a boundary,

1 otherwise,
(2.7)

while for the planar double-plaquette loops they are given by

w1(C) =
{ 1

2 if C crosses a boundary as in fig. 2,

1 otherwise.
(2.8)

Tree-level O(a)-improvement is then guaranteed if cG = 1.

2.3 Open-SF boundary conditions

In this case, SF boundary conditions are imposed at time T only. The static link

variables are then

U(x, k)|x0=T = exp{C ′
k}, C ′

k =
i

Nk
diag(φ′

1, . . . , φ
′
N ), (2.9)

while all other field variables are active. This amounts to imposing open boundary

conditions at time 0 [7].

When these boundary conditions are chosen, the weights wk(C) are given by

eqs. (2.7),(2.8), with cG replaced by c′G, for loops C near x0 = T . At time x0 = 0,

the weights of the spatial plaquette and double-plaquette loops are instead

wk(C) = 1
2cG, (2.10)

all other loops having weight wk(C) = 1. Tree-level O(a)-improvement is then again

guaranteed if cG = c′G = 1, but at higher orders of perturbation theory improvement

probably requires the coefficients cG and c′G to be different.
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3. Expansion of the action

From now on the improvement coefficients cG and c′G are set to 1 and the boundary

values Ck and C ′
k to zero. In perturbation theory, the link variables are represented

by a gauge potential Aµ(x) through

U(x, µ) = exp{g0Aµ(x)}, Aµ(x) = Aa
µ(x)T

a, (3.1)

where T a, a = 1, . . . , N2 − 1, is a basis of orthonormal anti-hermitian generators of

SU(N). The associated field tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (3.2)

is defined as in the continuum theory, with ∂µ being the forward difference operator

in direction µ.

3.1 Fourier representation

Both SF and open-SF boundary conditions go along with a natural Fourier repre-

sentation of the gauge potential. The momentum space is however not the same in

the two cases. While the space-like momentum components

pk ∈
{

n
2π

L

∣

∣

∣
n = 0, 1, . . . , L− 1

}

, k = 1, 2, 3, (3.3)

run over the same set of values, the time component p0 does not. Moreover, the

Fourier representation looks slightly different.

(a) SF boundary conditions. In this case

p0 ∈
{

n
π

T

∣

∣

∣
n = 0, 1, . . . , T − 1

}

(3.4)

and the gauge potential is represented by

A0(x) =
2

TL3

∑

p

′
cos(p0x0 +

1
2p0)e

ipxÃ0(p), (3.5)

Ak(x) =
2i

TL3

∑

p

′
sin(p0x0)e

ipx+ i

2
pkÃk(p), Ãk(p)

∣

∣

∣

p0=0
= 0. (3.6)
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The primed momentum sums run over all values of the four-momentum p = (p0,p),

the terms at p0 = 0 being counted with weight 1/2.

Using the orthogonality relations

T−1
∑

x0=0

cos(p0x0 +
1
2p0) cos(q0x0 +

1
2q0) =

1
2Tδp0q0(1 + δp00), (3.7)

T−1
∑

x0=1

sin(p0x0) sin(q0x0) =
1
2Tδp0q0(1− δp00), (3.8)

which hold for any momenta p0, q0 in the set (3.4), the representation (3.5),(3.6)

is easily shown to hold when the gauge potential satisfies the boundary conditions,

i.e. when Ak(x) vanishes at x0 = 0 and x0 = T .

The Fourier representation of the field tensor derives from the one of the gauge

potential and is given by

F0k(x) =
2i

TL3

∑

p

′
cos(p0x0 +

1
2p0)e

ipx+ i

2
pk

(

p̂0Ãk(p)− p̂kÃ0(p)
)

, (3.9)

Fkl(x) = − 2

TL3

∑

p

′
sin(p0x0)e

ipx+ i

2
(pk+pl)

(

p̂kÃl(p)− p̂lÃk(p)
)

, (3.10)

where

p̂µ = 2 sin( 12pµ) (3.11)

as usual.

(b) Open-SF boundary conditions. In this case

p0 ∈
{

(n+ 1
2 )

π

T

∣

∣

∣
n = 0, 1, . . . , T − 1

}

(3.12)

and the gauge potential is represented by

A0(x) =
2i

TL3

∑

p

sin(p0x0 +
1
2p0)e

ipxÃ0(p), (3.13)

Ak(x) =
2

TL3

∑

p

cos(p0x0)e
ipx+ i

2
pkÃk(p). (3.14)
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The existence and uniqueness of the representation again follows from the orthogo-

nality relations

T−1
∑

x0=0

sin(p0x0 +
1
2p0) sin(q0x0 +

1
2q0) =

1
2Tδp0q0 , (3.15)

T
∑

x0=0

′
cos(p0x0) cos(q0x0) =

1
2Tδp0q0 , (3.16)

where the primed summation symbol indicates that the terms at x0 = 0 and x0 = T

are given the weight 1/2. The Fourier representation of the field tensor is given by

F0k(x) = − 2

TL3

∑

p

sin(p0x0 +
1
2p0)e

ipx+ i

2
pk

(

p̂0Ãk(p)− p̂kÃ0(p)
)

, (3.17)

Fkl(x) =
2i

TL3

∑

p

cos(p0x0)e
ipx+ i

2
(pk+pl)

(

p̂kÃl(p)− p̂lÃk(p)
)

, (3.18)

for these boundary conditions.

3.2 Quadratic part of the action

In the following, the gauge potential Aµ(x) is considered to be defined at all points

x with integer coordinates through its Fourier representation. In the vicinity of the

boundary at x0 = 0, for example, this amounts to setting

A0(x̃− 0̂) = sA0(x), x̃ = (−x0,x), (3.19)

Ak(x̃) = −sAk(x), k = 1, 2, 3, (3.20)

where s = +1 (s = −1) when SF (open-SF) boundary conditions are imposed. The

analogous rules hold, with s = +1, at x0 = T . In particular,

F0k(x) = sF0k(x− 0̂) at x0 = 0, T. (3.21)

Clearly, the extension of the fields beyond the range 0 ≤ x0 ≤ T of time is purely

a matter of notational convenience and no additional degrees of freedom are intro-

duced.
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For both choices of boundary conditions, the gauge action is now given by

SG = 1
2c0

∑

x

{

T−1
∑

x0=0

[

F a
0k(x)

]2
+

T
∑

x0=0

′
1
2

[

F a
kl(x)

]2

}

+ 1
2c1

∑

x

{

T
∑

x0=0

′[
F a
0k(x) + F a

0k(x− 0̂)
]2

+
T−1
∑

x0=0

[

F a
k0(x) + F a

k0(x− k̂)
]2

+
T
∑

x0=0

′[
F a
kl(x) + F a

kl(x− k̂)
]2

}

+O(g0) (3.22)

(repeated indices group and space indices are to be summed over in this formula). In

terms of the Fourier components of the gauge field, this expression may be written

in the form†

SG =
1

2TL3

∑

p

′ ∑

µ,ν

(

1− c1(p̂
2
µ + p̂2ν)

)∣

∣p̂µÃ
a
ν(p)− p̂νÃ

a
µ(p)

∣

∣

2
+O(g0), (3.23)

or, equivalently, as

SG =
1

TL3

∑

p

′ ∑

µ,ν

Ãa
µ(p)

∗∆µν(p)Ã
a
ν(p) + O(g0), (3.24)

∆µν(p) = δµν p̂
2 − p̂µp̂ν − c1

{

δµν
[

p̂4 + 1
2 p̂

2
(

p̂2µ + p̂2ν
)]

− p̂3µp̂ν − p̂µp̂
3
ν

}

, (3.25)

p̂2 =
∑

µ

p̂2µ, p̂4 =
∑

µ

p̂4µ. (3.26)

Through the Fourier transformation, the diagonalization of the leading-order action

is thus achieved.

† Note that primed and ordinary momentum sums are the same in the case of open-SF boundary

conditions, since p0 = 0 is excluded from the momentum spectrum (3.12).
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4. Gauge fixing

With respect to the discussion of the lattice Schrödinger functional in ref. [10], the

gauge modes are here treated slightly differently so as to ensure that the leading-

order part of the gauge-fixed action is diagonal in momentum space. The gauge-

fixing is sensitive to the choice of boundary conditions. Open-SF and SF boundary

conditions are therefore considered separately and in this order, since the latter give

rise to some additional complications.

4.1 Open-SF boundary conditions

Infinitesimal gauge transformations are in this case described by fields

ω(x) ∈ su(N), 0 ≤ x0 ≤ T, (4.1)

satisfying the boundary condition

ω(x)|x0=T = 0. (4.2)

The momentum-space representation of these fields is of the form

ω(x) =
2

TL3

∑

p

cos(p0x0)e
ipxω̃(p), (4.3)

where the sum runs over the same set of momenta as in the case of the gauge

potential [cf. eqs. (3.12)–(3.14)]. For any two fields ω(x) and ν(x),

(ω, ν) =
T
∑

x0=0

′ ∑

x

ωa(x)νa(x) =
2

TL3

∑

p

ω̃(p)∗ν̃(p) (4.4)

is then a natural choice of scalar product.

To leading order in the gauge coupling, an infinitesimal gauge transformation

amounts to changing the gauge potential according to

Aµ(x) → Aµ(x) + ∂µω(x), 0 ≤ x0 < T. (4.5)

In momentum space, this is equivalent to

Ãµ(p) → Ãµ(p) + ip̂µω̃(p). (4.6)
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For the gauge fixing term, a possible choice is thus

Sgf =
1
2λ0(ðA, ðA), λ0 > 0, (4.7)

(ðA)(x) = (1 + c1∂
∗
µ∂µ)∂

∗
µAµ(x), (4.8)

where ∂∗µ denotes the backward difference operator and, as explained at the begin-

ning of subsect. 3.2, the gauge potential Aµ(x) is assumed to be defined at all integer

points x through its Fourier representation. In particular,

(ðA)(x) =
2i

TL3

∑

p

cos(p0x0)e
ipx(p̂µ − c1p̂

3
µ)Ãµ(p), (4.9)

so that the addition of the gauge-fixing term to the action amounts to changing its

quadratic part by

∆µν(p) → ∆µν(p) + λ0(p̂µ − c1p̂
3
µ)(p̂ν − c1p̂

3
ν) (4.10)

[cf. eqs. (3.23)–(3.25); note that 1−c1p̂
2
µ > 1/2 for all momenta p and directions µ in

view of the constraint (2.3) and c0 > 0]. To leading order in the gauge coupling, the

associated Faddeev–Popov operator is diagonal in momentum space too and equal

to p̂2 − c1p̂
4.

4.2 SF boundary conditions

The infinitesimal gauge transformations (4.1) must in this case satisfy the boundary

conditions

∂kω(x)|x0=0 = 0, k = 1, 2, 3, (4.11)

ω(x)|x0=T = 0, (4.12)

i.e. ω(x) must be constant at time x0 = 0. Any such field can be represented by

ω(x) = (1− x0/T )ω(0) + ω̂(x), (4.13)

ω̂(x) =
2i

TL3

∑

p

′
sin(p0x0)e

ipxω̃(p), ω̃(p)|p0=0 = 0, (4.14)
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where p0 runs over the set (3.4) of momenta. Clearly, the scalar product

(ω, ν) = TL3ωa(0)νa(0) +
T−1
∑

x0=1

∑

x

ω̂a(x)ν̂a(x)

= TL3ωa(0)νa(0) +
2

TL3

∑

p

′
ω̃a(p)∗ν̃a(p) (4.15)

is positive definite and therefore an acceptable choice in what follows†.
Under infinitesimal gauge transformations, the gauge potential transforms accord-

ing to eq. (4.5), as before, but in momentum space

Ãµ(p) → Ãµ(p) + ip̂µω̃(p)− L3δµ0δp0ω(0) (4.16)

there is an extra term at p = 0 that derives from the first term in eq. (4.13). The

gauge fixing term is then again given by eq. (4.7) with

(ðA)(x) = (1− x0/T )
1

T 2L3

T−1
∑

y0=0

∑

y

A0(y) + (1 + c1∂
∗
µ∂µ)∂

∗
µAµ(x). (4.17)

In momentum space, the addition of the gauge-fixing term to the action amounts to

replacing

∆µν(p) → ∆µν(p) +
λ0

T 2
δµ0δν0δp0 + λ0(p̂µ − c1p̂

3
µ)(p̂ν − c1p̂

3
ν) (4.18)

in eq. (3.23).

An extra term also appears in the Faddeev–Popov ghost action

SFP =
L3

T
c̄a(0)ca(0)−

T−1
∑

x0=1

∑

x

ˆ̄ca(x)(1 + c1∂
∗
µ∂µ)∂

∗
µ∂µĉ

a(x) + O(g0). (4.19)

The ghost fields c(x) and c̄(x) are fermion fields but otherwise of the same kind as

the infinitesimal gauge transformations, with a Fourier representation of the form

† The gauge-fixing term and the associated Faddeev–Popov ghost action depend on the choice of

the scalar product in the space of infinitesimal gauge transformations. The scalar product must

be real, symmetric and positive definite, but can otherwise be chosen arbitrarily. In particular,

contrary to what is suggested in ref. [13], the scalar product does not need to be invariant under

the (adjoint) action of the gauge group.
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(4.13),(4.14). In the vicinity of the boundaries of the lattice, the latter allows the

fields to be defined beyond the range 0 ≤ x0 ≤ T . This rule amounts to extending

∂µc(x) in exactly the same way as the gauge potential. The action of the lattice

derivatives in eq. (4.19) near the boundaries is defined through the extension as

usual. In particular, the ghost action

SFP =
L3

T
c̄a(0)ca(0) +

2

TL3

∑

p

′
˜̄ca(p̃)(p̂2 − c1p̂

4)c̃a(p), p̃ = (p0,−p), (4.20)

is diagonal in momentum space.

5. Gauge propagator

With the gauge-fixing term in place, the quadratic part of the total action is easily

shown to have no zero modes. The gauge propagator is thus well-defined and can

be worked out explicitly in momentum space.

5.1 Propagator in momentum space

In the case of SF boundary conditions, the spatial Fourier components Ãk(p) of the

gauge field vanish at p0 = 0. The gauge propagator at zero and non-zero p0 must

therefore be considered separately.

For any p0 6= 0 (and thus in all cases when open-SF boundary conditions are

chosen), the inverse propagator in momentum space,

(D−1)µν(p) = ∆µν(p) + λ0(p̂µ − c1p̂
3
µ)(p̂ν − c1p̂

3
ν), (5.1)

is a non-degenerate 4× 4 matrix. The propagator, Dµν(p), is hence unambiguously

determined. Its dependence on the gauge parameter λ0 can be worked out by noting

that

∂

∂λ0
Dµν = −(Du)µ(Du)ν , uµ = p̂µ − c1p̂

3
µ, (5.2)

(D−1p̂)µ = λ0(up̂)uµ, (5.3)

and thus

Dµν(p) = Dµν(p)|λ0=1 + (λ−1
0 − 1)

p̂µp̂ν
(up̂)2

. (5.4)
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For the non-gauge part of the propagator, a few lines of algebra quickly lead to the

expression

Dµν(p)|λ0=1 =
δµν
rµ

− vµvν
1 +

∑

ρ v
2
ρrρ

, (5.5)

rµ = p̂2 − c1(p̂
4 + p̂2p̂2µ), vµ = c1p̂

3
µ/rµ. (5.6)

Note that the second term in eq. (5.5) is of order a4 in the continuum limit and that

rµ is positive.

At all momenta with p0 = 0, on the other hand, the gauge action depends on the

time component Ã0(p) only. For notational convenience, it is helpful to set

Dµν(p)|p0=0 = 0 if µ 6= 0 or ν 6= 0. (5.7)

The non-trivial component of the propagator is then

D00(p)|p0=0 =

{

λ−1
0 T 2 if p = 0,

(p̂2 − c1p̂
4)−1 otherwise.

(5.8)

As already mentioned, this case only occurs if SF boundary conditions are chosen.

5.2 Two-point function

To leading order in the gauge coupling, and for SF boundary conditions, the two-

point function of the gauge potential is given by [cf. eq. (7.10)]

〈Aa
0(x)A

b
0(y)〉 =

2δab

TL3

∑

p

′
cos(p0x0 +

1
2p0) cos(p0y0 +

1
2p0)e

ip(x−y)D00(p), (5.9)

〈Aa
0(x)A

b
k(y)〉 = −2iδab

TL3

∑

p

′
cos(p0x0 +

1
2p0) sin(p0y0)e

ip(x−y)− i

2
pkD0k(p),

(5.10)

〈Aa
k(x)A

b
0(y)〉 =

2iδab

TL3

∑

p

′
sin(p0x0) cos(p0y0 +

1
2p0)e

ip(x−y)+ i

2
pkDk0(p), (5.11)

〈Aa
k(x)A

b
l (y)〉 =

2δab

TL3

∑

p

′
sin(p0x0) sin(p0y0)e

ip(x−y)+ i

2
(pk−pl)Dkl(p). (5.12)
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The momenta with p0 = 0 do not contribute in these equations except in the case

of the correlation function (5.9) of the time component of the gauge field.

When open-SF boundary conditions are chosen, the two-point functions assume

the form

〈Aa
0(x)A

b
0(y)〉 =

2δab

TL3

∑

p

sin(p0x0 +
1
2p0) sin(p0y0 +

1
2p0)e

ip(x−y)D00(p), (5.13)

〈Aa
0(x)A

b
k(y)〉 =

2iδab

TL3

∑

p

sin(p0x0 +
1
2p0) cos(p0y0)e

ip(x−y)− i

2
pkD0k(p), (5.14)

〈Aa
k(x)A

b
0(y)〉 = −2iδab

TL3

∑

p

cos(p0x0) sin(p0y0 +
1
2p0)e

ip(x−y)+ i

2
pkDk0(p),

(5.15)

〈Aa
k(x)A

b
l (y)〉 =

2δab

TL3

∑

p

cos(p0x0) cos(p0y0)e
ip(x−y)+ i

2
(pk−pl)Dkl(p), (5.16)

where p0 here runs over the set (3.12).

6. Integration of the flow equation

6.1 Flow equation

The Yang–Mills gradient flow evolves the active link variables as a function of the

flow time, while the static link variables are held fixed. When the lattice has bound-

aries, as is the case here, some care needs to be taken to ensure that the flow equation

does not introduce O(a) lattice effects.

Let Sw be the tree-level O(a)-improved Wilson plaquette action, i.e. the gauge

action SG with c0 = 1, c1 = 0 and cG = 1. The gauge field Vt(x, µ) at flow time t is

determined by the boundary condition

Vt(x, µ)|t=0 = U(x, µ) (6.1)

and the flow equation

∂tVt(x, µ)Vt(x, µ)
−1 = −wx,µg

2
0{∂a

x,µSw(Vt)}T a, 0 ≤ x0 < T, (6.2)
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where ∂a
x,µSw(U) denotes the partial derivative of the action with respect to the link

variable U(x, µ) in direction of the SU(N) generator T a.

The weight factor wx,µ in eq. (6.2) depends on the chosen boundary conditions.

For SF boundary conditions

wx,µ =

{

0 if x0 = 0 and µ > 0,

1 otherwise,
(6.3)

while for open-SF boundary conditions

wx,µ =

{

2 if x0 = 0 and µ > 0,

1 otherwise.
(6.4)

As will made clear below, assigning weight 2 to the spatial links at time 0 is required

for O(a) improvement [14].

6.2 Gauge damping

In perturbation theory, the link variables U(x, µ) are close to unity, but the link

variables Vt(x, µ) obtained by integrating the flow equation need not have this prop-

erty since the gradient flow does not damp the gauge degrees of freedom. Gauge

damping allows this problem to be avoided through the addition of a term to the

flow equation that has no effect on the time evolution of gauge-invariant observables.

Let Λt(x) be a gauge transformation that depends on the flow time t and that

satisfies

Λt(x)|t=0 = 1, (6.5)

Λt(x)|x0=T = 1, (6.6)

and additionally

∂kΛt(x)|x0=0 = 0, k = 1, 2, 3, (6.7)

if SF boundary conditions are chosen. The transformed field

Ṽt(x, µ) = Λt(x)Vt(x, µ)Λt(x+ µ̂)−1 (6.8)

is then a solution of the modified flow equation

∂tṼt(x, µ)Ṽt(x, µ)
−1 = −wx,µg

2
0{∂a

x,µSw(Ṽt)}T a − D̃µωt(x), (6.9)
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ωt(x) = ∂tΛt(x)Λt(x)
−1, (6.10)

D̃µωt(x) = Ṽt(x, µ)ωt(x+ µ̂)Ṽt(x, µ)
−1 − ωt(x), (6.11)

with the same boundary value (6.1) as Vt(x, µ).

In perturbation theory

Ṽt(x, µ) = exp{g0Bµ(t, x)}, Bµ(t, x)|t=0 = Aµ(x), (6.12)

and the damping of the gauge modes can be achieved by setting

ωt(x) = −g0α0

{

(1− x0/T )
1

T 2L3

T−1
∑

y0=0

∑

y

B0(t, y) + ∂∗µBµ(t, x)

}

(6.13)

in the case of SF boundary conditions and

ωt(x) = −g0α0∂
∗
µBµ(t, x) (6.14)

for open-SF boundary conditions. In these formulae, α0 > 0 denotes an adjustable

“gauge damping parameter” and the divergence of the gauge potential Bµ(t, x) at

the boundaries is to be evaluated by extending the potential to all points x in the

same way as Aµ(x) (cf. discussion at the beginning of subsect. 3.2). The gauge

transformation Λt(x) is then determined through the differential equation (6.10)

and the boundary condition (6.5).

6.3 Solution of the flow equation to leading order in g0

Up to higher-order corrections, the flow equation reads

∂tBµ(t, x) = {∂∗ρ∂ρδµν + (α0 − 1)∂µ∂
∗
ν}Bν(t, x)

− δµ0
α0

T 3L3

T−1
∑

y0=0

∑

y

B0(t, y), (6.15)

where the last term is absent in the case of open-SF boundary conditions. As usual,

the action of the derivatives near the boundaries of the lattice is defined by extending

the fields beyond the range 0 ≤ x0 ≤ T . Equation (6.15) was derived taking the

weight factors (6.3),(6.4) into account and it would look different if different weights

were chosen.
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In momentum space, the flow equation assumes the form

∂tB̃µ(t, p) = −{p̂2δµν + (α0 − 1)p̂µp̂ν}B̃ν(t, p)− δp0δµ0
α0

T 2
B̃0(t, 0), (6.16)

and for any non-zero momentum p its solution given by

B̃µ(t, p) =
e−tp̂2

p̂2
(p̂2δµν − p̂µp̂ν)Ãν(p) +

e−α0tp̂
2

p̂2
p̂µp̂νÃν(p). (6.17)

At p = 0 (and thus for SF boundary conditions),

B̃µ(t, 0) = δµ0e
−α0t/T

2

Ã0(0) (6.18)

is the only non-vanishing Fourier component of the field.

7. Running coupling

7.1 Definition

Let Gµν(t, x) be the standard clover lattice representation of the gauge-field tensor

at flow time t. The running coupling introduced in ref. [5] is then given by

ḡ2 = k
{

t2〈E(t, x)〉
}

√
8t=cL

, (7.1)

E(t, x) = 1
4G

a
µν(t, x)G

a
µν(t, x), (7.2)

where c is an adjustable constant that is part of the definition of the scheme. The

normalization constant k is to be chosen such that

ḡ2 = g20 +O(g40) (7.3)

in the weak-coupling limit.

With SF or open-SF boundary conditions, the renormalized coupling (7.1) depends

on the lattice sizes T and L, the proportionality constant c and the time x0. Setting

x0 = T/2 is a natural choice, but in the following x0 may assume any integer value

in the range 0 < x0 < T . Of course, the coupling also depends on the theory and

the parameters of the lattice action.
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7.2 Leading-order expression for the field tensor

In position space,

Gµν(t, x) =
g0
4
{Fµν(t, x) + Fµν(t, x− µ̂) + Fµν(t, x− ν̂) + Fµν(t, x− µ̂− ν̂)}

(7.4)

up to terms of order g20 , where

Fµν(t, x) = ∂µBν(t, x)− ∂νBµ(t, x). (7.5)

Recalling eqs. (6.17),(6.18), one then obtains

G0k(t, x) =
2ig0
TL3

∑

p

′
cos(p0x0)e

ipxe−tp̂2

× cos( 12p0) cos(
1
2pk){p̂0Ãk(p)− p̂kÃ0(p)}, (7.6)

Gkl(t, x) = − 2g0
TL3

∑

p

′
sin(p0x0)e

ipxe−tp̂2

× cos( 12pk) cos(
1
2pl){p̂kÃl(p)− p̂lÃk(p)}, (7.7)

for SF boundary conditions and

G0k(t, x) = − 2g0
TL3

∑

p

sin(p0x0)e
ipxe−tp̂2

× cos( 12p0) cos(
1
2pk){p̂0Ãk(p)− p̂kÃ0(p)}, (7.8)

Gkl(t, x) =
2ig0
TL3

∑

p

cos(p0x0)e
ipxe−tp̂2

× cos( 12pk) cos(
1
2pl){p̂kÃl(p)− p̂lÃk(p)}, (7.9)

for open-SF boundary conditions. All terms depending on the gauge-damping pa-

rameter α0 drop out in these equations. In particular, the term (6.18) does not

contribute, since the right-hand side of eq. (7.6) vanishes at p = 0.
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7.3 Normalization factor

Noting

〈Ãa
µ(p)Ã

b
ν(q)

∗〉 = TL3

2
δpq(1 + δp00)δ

abDµν(p) + O(g20), (7.10)

the expectation value on the right of eq. (7.1) is now easily evaluated to leading

order. As a result one obtains an analytic expression for the normalization factor

k. To be able to write it down in a compact form, it is helpful to introduce the

symmetric tensor

Sµν(p) = (1− 1
4 p̂

2
µ)(1− 1

4 p̂
2
ν)

{

p̂2µDνν(p) + p̂2νDµµ(p)− 2p̂µp̂νDµν(p)
}

. (7.11)

The normalization factor is then given by

k−1 =
N2 − 1

TL3

∑

p

′ {
t2e−2tp̂2

}

√
8t=cL

×







cos(p0x0)
2

3
∑

l=1

Sl0(p) + sin(p0x0)
2

3
∑

l>j=1

Slj(p)







(7.12)

for SF boundary conditions and by

k−1 =
N2 − 1

TL3

∑

p

{

t2e−2tp̂2
}

√
8t=cL

×







sin(p0x0)
2

3
∑

l=1

Sl0(p) + cos(p0x0)
2

3
∑

l>j=1

Slj(p)







(7.13)

for open-SF boundary conditions. Equations (7.12) and (7.13) are very similar, but

the momentum p0 runs over different sets of values in the two cases. There is no

dependence on the gauge-fixing parameter λ0, since the gauge term in eq. (5.4) and

the term at p = 0 in eq. (5.8) both drop out when the tensor Sµν(p) is formed.

7.4 Special cases

(1) Open-SF boundary conditions, x0 = T/2. In this particular case,

cos(p0x0)
2 = sin(p0x0)

2 =
1

2
(7.14)
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for all momenta p0 so that

k−1 =
N2 − 1

2TL3

∑

p

{

t2e−2tp̂2
}

√
8t=cL

3
∑

µ>ν=0

Sµν(p). (7.15)

In the continuum limit,

3
∑

µ>ν=0

Sµν(p) → 3, (7.16)

and the normalization factor converges to a product

k−1 =
3(N2 − 1)

4TL3
t2ϑ2(0)ϑ3(0)

3, (7.17)

ϑ2(0) =
∞
∑

n=−∞
exp

{

−2tπ2

T 2
(n+ 1

2 )
2

}

, (7.18)

ϑ3(0) =
∞
∑

n=−∞
exp

{

−8tπ2

L2
n2

}

, (7.19)

of Jacobi theta-functions (here and below it is understood that
√
8t is set to cL).

Using the Poisson summation formula

∞
∑

n=−∞
f(2πn) =

1

2π

∞
∑

n=−∞
f̃(n), f̃(n) =

∫ ∞

−∞
dx einxf(x), (7.20)

(which holds for any smooth and rapidly decaying function f(x)), the theta-functions

can be written in the form

ϑ2(0) =
T√
2πt

∞
∑

n=−∞
(−1)n exp

{

−T 2

2t
n2

}

, (7.21)

ϑ3(0) =
L√
8πt

∞
∑

n=−∞
exp

{

−L2

8t
n2

}

. (7.22)

In this special case, the finite-volume corrections are thus exponentially suppressed.

For T = L and c = 0.3, for example, the normalization factor is equal to its infinite-

20



volume value,

k−1 =
L2/t→∞

3(N2 − 1)

128π2
, (7.23)

within a relative deviation of less than 10−4.

(2) Wilson plaquette action. For all p 6= 0 and µ 6= ν, the tensor (7.11) is given by

Sµν(p) = (1− 1
4 p̂

2
µ)(1− 1

4 p̂
2
ν)

p̂2µ + p̂2ν
p̂2

(7.24)

in this case. The tensor vanishes when p = 0. Equation (7.12) is then found to agree

with the result obtained in ref. [5]†.
(3) Continuum limit. For fixed T/L, x0/T and c, the normalization factor k con-

verges to its continuum value as L → ∞ with a rate proportional to 1/L2 (cf. tables

in appendix A).

8. Alternative running couplings

The definition (7.1),(7.2) of the running coupling may be varied in several ways. The

clover expression for the square of the field tensor can be replaced by the plaquette

definition, for example, or the sum over the Lorentz indices in eq. (7.2) may be

restricted to the spatial and time-like components.

8.1 Definitions considered

In the following, the subscripts cs,ct,ps and pt distinguish different lattice expressions

for the space- and time-like parts of the square of the field tensor. Explicitly,

Ecs(t, x) =
1
4G

a
kl(t, x)G

a
kl(t, x), (8.1)

Ect(t, x) =
1
2G

a
0k(t, x)G

a
0k(t, x), (8.2)

† In the formula quoted in this paper, it is understood that any terms involving the momentum

pi are to be summed over the index i from 1 to 3. The (ill-defined) summand at p = 0 should be

omitted.
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while Eps and Ept stand for the corresponding symmetric expressions constructed

using the plaquette loops passing through x (cf. subsect. 8.3).

The associated running couplings, ḡcs, . . . , ḡpt, are again given by eq. (7.1), with

E replaced by Ecs, . . . , Ept, respectively, and the proportionality constant k by con-

stants kcs, . . . , kpt so that all couplings coincide with g20 to lowest order in perturba-

tion theory.

8.2 Computation of kcs and kct

These two constants may be calculated following the lines of subsect. 7.2. In the

case of SF boundary conditions,

k−1
cs =

N2 − 1

TL3

∑

p

′ {
t2e−2tp̂2

}

√
8t=cL

sin(p0x0)
2

3
∑

l>j=1

Slj(p), (8.3)

k−1
ct =

N2 − 1

TL3

∑

p

′ {
t2e−2tp̂2

}

√
8t=cL

cos(p0x0)
2

3
∑

l=1

Sl0(p), (8.4)

while for open-SF boundary conditions the result

k−1
cs =

N2 − 1

TL3

∑

p

{

t2e−2tp̂2
}

√
8t=cL

cos(p0x0)
2

3
∑

l>j=1

Slj(p), (8.5)

k−1
ct =

N2 − 1

TL3

∑

p

{

t2e−2tp̂2
}

√
8t=cL

sin(p0x0)
2

3
∑

l=1

Sl0(p), (8.6)

is obtained.

8.3 Computation of kps and kpt

To leading order in the gauge coupling,

Eps(t, x) =
g20
16

3
∑

k,l=1

(2− ∂∗k)(2− ∂∗l){F a
kl(t, x)F

a
kl(t, x)}, (8.7)

Ept(t, x) =
g20
8

3
∑

k=1

(2− ∂∗0)(2− ∂∗k){F a
0k(t, x)F

a
0k(t, x)}, (8.8)
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where Fµν(t, x) is given by eq. (7.5). For SF boundary conditions,

F0k(t, x) =
2i

TL3

∑

p

′
e−tp̂2

cos(p0x0 +
1
2p0)e

ipx+ i

2
pk

(

p̂0Ãk(p)− p̂kÃ0(p)
)

, (8.9)

Fkl(t, x) = − 2

TL3

∑

p

′
e−tp̂2

sin(p0x0)e
ipx+ i

2
(pk+pl)

(

p̂kÃl(p)− p̂lÃk(p)
)

, (8.10)

which leads to the expressions

k−1
ps =

N2 − 1

TL3

∑

p

′ {
t2e−2tp̂2

}

√
8t=cL

sin(p0x0)
2

3
∑

l>j=1

Rlj(p), (8.11)

k−1
pt =

N2 − 1

TL3

∑

p

′ {
t2e−2tp̂2

}

√
8t=cL

× 1
2

{

cos(p0x0 +
1
2p0)

2 + cos(p0x0 − 1
2p0)

2
}

3
∑

l=1

Rl0(p), (8.12)

Rµν(p) = p̂2µDνν(p) + p̂2νDµµ(p)− 2p̂µp̂νDµν(p), (8.13)

for the normalization factors.

In the case of open-SF boundary conditions,

F0k(t, x) = − 2

TL3

∑

p

e−tp̂2

sin(p0x0 +
1
2p0)e

ipx+ i

2
pk

(

p̂0Ãk(p)− p̂kÃ0(p)
)

,

(8.14)

Fkl(t, x) =
2i

TL3

∑

p

e−tp̂2

cos(p0x0)e
ipx+ i

2
(pk+pl)

(

p̂kÃl(p)− p̂lÃk(p)
)

, (8.15)

and for the normalization factors, the expressions

k−1
ps =

N2 − 1

TL3

∑

p

{

t2e−2tp̂2
}

√
8t=cL

cos(p0x0)
2

3
∑

l>j=1

Rlj(p), (8.16)
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k−1
pt =

N2 − 1

TL3

∑

p

{

t2e−2tp̂2
}

√
8t=cL

× 1
2

{

sin(p0x0 +
1
2p0)

2 + sin(p0x0 − 1
2p0)

2
}

3
∑

l=1

Rl0(p), (8.17)

are then obtained.

Appendix A

Some sample results for the normalization factors are shown in tables 1–4. In all

cases considered

T = L, x0 = T/2, c = 0.3, (A.1)

and the action is chosen to be the Wilson plaquette action (thus c1 = 0). In the

tables, kc and kp denote the normalization factors

kc =
{

k−1
cs + k−1

ct

}−1
, k−1

p =
{

k−1
ps + k−1

pt

}−1
, (A.2)

of the couplings defined with the clover and plaquette definitions of the full Yang-

Mills action density.
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