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1 Introduction

In these notes we describe an implementation of numerical stochastic perturbation theory for

the pure SU(N) Yang-Mills theory based on the Langevin equation [1,2,3,4,5]. In particular,

some specific integrator and the necessary gauge damping are discussed in detail. The

presentation closely follows the one of ref. [6], to which we refer to, as well as to ref. [7], for

the definition of the lattice set-up and unexplained notation.

2 Langevin equation

2.1 Case without gauge damping

2.1.1 Definition

The pure SU(N) Yang-Mills theory on the lattice is defined in terms of the link variables

U(x, µ) ∈ SU(N). The Langevin equation,

∂tUt(x, µ) = [−wx,µ(∂ax,µSG)(Ut)T
a + ηt(x, µ)]Ut(x, µ), (2.1)

〈ηat (x, µ)〉 = 0, 〈ηat (x, µ)ηbs(y, ν)〉 = 2wx,µδ
abδµνδ(t− s)δxy, (2.2)

then determines the trajectory in field space, Ut(x, µ), along the stochastic time t, given some

initial value for the gauge field at a given time (say t = 0). In these equations, ηt(x, µ) =

ηat (x, µ)T a is a Gaussian random noise field, while ∂ax,µSG(Ut) denotes the derivative of the

gauge action SG with respect to the link variable Ut(x, µ) in the direction of the SU(N)

generator T a. Note in particular that a weight factor wx,µ is included. The latter depends

on the chosen boundary conditions. Specifically, for SF boundary conditions this reads,

wx,µ =

{
0, if x0 = 0 and µ > 0,

1, otherwise,
(2.3)

while for open-SF boundary conditions,

wx,µ =

{
2, if x0 = 0 and µ > 0,

1, otherwise.
(2.4)
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This weight factor ensures that the Langevin equation is diagonal in momentum space at

leading order in the coupling [6] (see also Appendix A). As we shall see shortly, however, it

does not modify the equilibrium distribution of the stochastic process under consideration,

but rather influences the approach to it. Before presenting this result, we also note that in

order to obtain a consistent perturbative expansion of the Langevin equation, one needs to

rescale the stochastic time as t→ tg20 in (2.1) and (2.2). As a result one can consider instead

of (2.1) the equation,

∂tUt(x, µ) = [−g20wx,µ(∂ax,µSG)(Ut)T
a + g0ηt(x, µ)]Ut(x, µ), (2.5)

while leaving (2.2) unchanged.

2.1.2 Equilibrium distribution

Following the steps of [8,9], it is easy to derive the Fokker-Planck (FP) equation associated

to the Langevin equation (2.5). The result is given by,

∂tPt(U) =
∑
x,µ,a

g20wx,µ ∂
a
x,µ

[
(∂ax,µSG)(U) + ∂ax,µ

]
Pt(U), (2.6)

where Pt(U) is the probability distribution of the gauge field U at time t. In particular,

the equilibrium distribution, P (U), corresponds to a fixed point of the FP equation and

satisfies,∑
x,µ,a

g20wx,µ ∂
a
x,µ

[
(∂ax,µSG)(U) + ∂ax,µ

]
P (U) = 0. (2.7)

Clearly, a solution to this equation is,

P (U) ∝ e−SG(U). (2.8)

As anticipated, the boundary weight factor does not influence the equilibrium distribution.

(The same is trivially true of course for the rescaling of the stochastic time.) This freedom in

defining the Langevin equation is in fact a well known feature of the dynamics (see e.g. [10]).

2.2 Case with gauge damping

2.2.1 Definition

In a numerical implementation of stochastic perturbation theory, the introduction of a gauge

damping is necessary in order to stabilize the simulations. This can be obtained by consid-

ering a time dependent gauge transformation of the fields,

Ut(x, µ)→ Λt(x)Ut(x, µ)Λt(x+ µ̂)−1, ηt(x, µ)→ Λt(x)ηt(x, µ)Λt(x)−1. (2.9)

Note that in order to be consistent with the boundary conditions the gauge transformation

needs to satisfy the conditions,

Λt(x)|x0=T = 1, Λt(x+ k̂L) = Λt(x), (2.10)
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in the case of open-SF boundary conditions, and additionally,

∂kΛt(x)|x0=0 = 0, k = 1, 2, 3, (2.11)

if SF boundary conditions are chosen. By convention we also set

Λt(x)|t=0 = 1. (2.12)

Taking into account the Langevin equation (2.5), it is then easy to show that the gauge

transformed fields satisfy the modified equation,

∂tUt(x, µ) = [−g20wx,µ(∂ax,µSG)(Ut)T
a − g0∇µωt(x) + g0ηt(x, µ)]Ut(x, µ), (2.13)

where,

ωt(x) =
1

g0
∂tΛt(x)Λt(x)−1 ∈ su(N), (2.14)

and where we introduced the gauge covariant derivative,

∇µωt(x) = Ut(x, µ)ωt(x+ µ̂)Ut(x, µ)−1 − ωt(x). (2.15)

The defining equations for the noise (2.2), instead, are unchanged.

Given the modified Langevin equation a damping of the longitudinal modes of the gauge

field can be obtained by choosing [6] (see also Appendix A),

ωt(x) = −λ0
3∑

µ=0

∂∗µCt(x, µ), (2.16)

and

ωt(x) = −λ0
{

(1− x0/T )
1

T 2L3

∑
y

Ct(y, 0) +

3∑
µ=0

∂∗µCt(x, µ)

}
, (2.17)

for open-SF and SF boundary conditions, respectively. In these equations,

Ct(x, µ) =
1

2g0

{
Ut(x, µ)− Ut(x, µ)−1 − 1

N
tr
[
Ut(x, µ)− Ut(x, µ)−1

]}
, (2.18)

takes values in su(N) and,

∂∗0Ct(x, 0)|x0=0 =

{
2Ct(x, 0), for open-SF bc,

0, for SF bc,
(2.19)

by convention.
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2.2.2 Equilibrium distribution

The FP equation associated to the modified Langevin equation (2.13) reads (cf. eq. (2.6)),

∂tPt(U) =
∑
x,µ,a

∂ax,µ
[
g20wx,µ(∂ax,µSG)(U) + g0(∇µωt(x))a + g20wx,µ∂

a
x,µ

]
Pt(U). (2.20)

In this case the equilibrium distribution cannot be expressed as an exponential of an action,

except at the lowest order of perturbation theory. This distribution can, however, be worked

out order by order in perturbation theory following the lines of [11,9]. In this section we focus

on the lowest order result in the coupling. For simplicity we take for SG the Wilson-plaquette

action. The results of the section trivially extend to the improved actions considered in [6].

At this order in perturbation theory the Langevin equation (2.13) can be written as [6],

∂tAµ(t, x) = {∂∗ρ∂ρδµν + (λ0 − 1)∂µ∂
∗
ν}Aν(t, x)

− δµ0
λ0
T 3L3

T−1∑
y0=0

∑
y

A0(t, y) + ηµ(t, x) + O(g0), (2.21)

where the second term on the right hand side of the equation is absent in the case of open-

SF boundary conditions. Note that the action of the derivatives near the boundaries of the

lattice is defined by extending the fields beyond the range 0 ≤ x0 ≤ T , and by using their

Fourier representation to define the values of the fields outside this range [6].

Having this noticed, the FP equation corresponding to (2.21) reads,

∂tPt(A) =
∑
x,µ,a

δ

δAaµ(x)

{
− ∂∗νF aνµ − λ0∂µ∂∗νAaν(x)

+ δµ0
λ0
T 3L3

T−1∑
y0=0

∑
y

Aa0(y) + wx,µ
δ

δAaµ(x)

}
Pt(A), (2.22)

where δ/δAaµ(x) stands for the derivative with respect to the Aaµ(x) component of the gauge

potential, while the field strength tensor is defined as,

Fµν(x) = ∂µAν(x)− ∂νAµ(x), (2.23)

with ∂µ being the forward-lattice derivative.

The above equation can be recast into the form,

∂tPt(A) =
∑
x,µ,a

wx,µ
δ

δAaµ(x)

{
δSG(A)

δAaµ(x)
+
δSgf(A)

δAaµ(x)
+

δ

δAaµ(x)

}
Pt(A), (2.24)

where for both SF and open-SF boundary conditions SG(A) is the gauge action given by [6],

SG(A) = 1
2

∑
x

{ T−1∑
x0=0

[
F a0k
(
x)]2 +

T∑
x0=0

′ 1
2

[
F akl
(
x)]2

}
, (2.25)

where the primed summation symbol indicates that the terms at x0 = 0 and x0 = T are

given a weight of 1/2.
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The second contribution on the right hand side of (2.24) is expressed, instead, in terms

of the gauge fixing action,

Sgf(A) = 1
2λ0(ðA,ðA). (2.26)

The definition of the scalar product (·, ·), and of the operator ð : su(N) → su(N) depends

on the boundary conditions. We refer to Section 4 of [6] for the details.

In conclusion, given our choice of gauge damping function, at the lowest order in the

coupling the equilibrium theory for the modified Langevin equation (2.13) corresponds to

the gauge fixed theory defined in [6], i.e.,

P (A) ∝ e−S(A) with S = SG + Sgf . (2.27)

Equivalently, this can be seen by a direct computation of the basic two-point functions of

the gauge potential using the Langevin equation (see Appendix A).

3 Discrete integrators

As presented in the previous subsections, the Langevin equation that needs to be solved is,

∂tUt(x, µ) = [−Fx,µ(Ut) + g0ηt(x, µ)]Ut(x, µ), (3.1)

where for later convenience we introduced the drift force,

Fx,µ(Ut) = g20wx,µ(∂ax,µSG)(Ut)T
a + g0∇µωt(x). (3.2)

This equation can be solved by first discretizing the stochastic time as t = nε, n ∈ N, where

ε is the step-size. Then, a given integration scheme is chosen such that the correct equation

is recovered for ε → 0. In the following we present two possible integration schemes which

satisfy this requirement.

3.1 Euler scheme

Given some initial field configuration Ut=0(x, µ), the Euler scheme is defined by the iteration

of the elementary step,

Ut+ε(x, µ) = e−ft(x,µ)Ut(x, µ), (3.3)

where the force field ft(x, µ) ∈ su(N) is defined as,

ft(x, µ) = εFx,µ(Ut) +
√
εg0ηt(x, µ), (3.4)

and the noise field is normalized such as,

〈ηat (x, µ)ηbs(y, ν)〉 = 2wx,µδ
abδµνδtsδxy. (3.5)

(Note in particular that the sign of the noise in (3.4) can be chosen at wish.) It is easy to

show that this integration scheme introduces errors of O(ε) in expectation values of generic

observables. These need to be extrapolated away by taking the limit ε→ 0 [12,13].
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3.2 Runge-Kutta scheme

Runge-Kutta schemes allow to reduce discretization errors in the integration of the Langevin

equation. On the other hand, so far, only second order integrators have been derived for

Yang-Mills theories [12,13,14]. Through these integrators the Langevin equation is solved

up to O(ε2) corrections. Specifically, the algorithm we consider is the one proposed in [14],

which in the present case is defined by the elementary step,

Ut+ε(x, µ) = e−f̃t(x,µ)Ut(x, µ), (3.6)

with,

f̃t(x, µ) =

(
1 + CA

5− 3
√

2

12
εg20wx,µ

)
εFx,µ(Ũt+ε) +

√
εg0ηt(x, µ). (3.7)

Here CA is the Casimir invariant of the adjoint representation (for SU(N) thus CA = N).

The drift force Fx,µ(Ũt+ε) is computed in terms of the tentative update,

Ũt+ε(x, µ) = e−ft(x,µ)Ut(x, µ), (3.8)

where ft(x, µ) is given by

ft(x, µ) =
3− 2

√
2

2
εFx,µ(Ut) +

2−
√

2

2

√
εg0ηt(x, µ), (3.9)

with ηt(x, µ) being the same noise field that appears in (3.7).

Remark: The inclusion of the gauge damping in the Langevin evolution can alternatively

be accounted for in the following way. Let

Iε(t) : Ut → Ut+ε, (3.10)

be a single step of a discrete integrator which solves for ε→ 0 the original Langevin equation,

∂tUt(x, µ) = [−g20wx,µ(∂ax,µSG)(Ut)T
a + g0ηt(x, µ)]Ut(x, µ). (3.11)

This can be for example the Euler scheme (3.3) or the Runge-Kutta scheme (3.6), given the

substitution,

Fx,µ(Ut)→ Fx,µ(Ut) = g20wx,µ(∂ax,µSG)(Ut)T
a, (3.12)

and analogously for Fx,µ(Ũt+ε). We then define the gauge rotation,

Gε(t) : Ut(x, µ)→ eεg0ωt(x) Ut(x, µ) e−εg0ωt(x+µ̂), (3.13)

where ωt(x) is given by (2.16) or (2.17) depending on whether open-SF or SF boundary

conditions are considered. The complete update cycle from t to t+ ε which implements the

gauge-damped Langevin equation (2.13) is now simply obtained by the application of the

integrator Iε(t) followed by the gauge rotation Gε(t+ ε).
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A Gluon propagator in stochastic perturbation theory

A.1 Definitions

In this appendix we want to compute the basic two-point functions of the gauge potential

at the lowest order in perturbation theory for the equilibrium theory corresponding to the

modified Langevin equation (2.13). To this end, we recall the result for the lowest order

Langevin equation when SG is taken to be the Wilson-plaquette action [6],

∂tAµ(t, x) = {∂∗ρ∂ρδµν + (λ0 − 1)∂µ∂
∗
ν}Aν(t, x)+

− δµ0
λ0
T 3L3

T−1∑
y0=0

∑
y

A0(t, y) + ηµ(t, x) + O(g0), (A.1)

where,

〈ηaµ(t, x)〉 = 0, 〈ηaµ(t, x)ηbν(s, y)〉 = 2wx,µδ
abδµνδ(t− s)δxy. (A.2)

We also remind the reader that the second term on the r.h.s. of the equation (A.1) is not

present if open-SF boundary conditions are considered, and that the derivatives close to

the boundaries of the lattice are defined through the Fourier representation of the fields.

In particular, using the Fourier representation introduced in [6], in momentum space the

Langevin equation (A.1) assumes the simple diagonal form [6],

∂tÃµ(t, p) = −{p̂2δµν + (λ0 − 1)p̂µp̂ν}Ãν(t, p)− δp0δµ0
λ0
T 2
Ã0(t, 0) + η̃µ(t, p). (A.3)

Here the Fourier transform of the noise field ηµ(t, x) is analogously defined to the one of the

gauge potential Aµ(t, x). Specifically, this means that for SF boundary conditions we have,

η0(t, x) =
2

TL3

∑
p

′
cos(p0x0 + 1

2p0)eipx η̃0(t, p), (A.4)

ηk(t, x) =
2i

TL3

∑
p

′
sin(p0x0)eipx+

i
2pk η̃k(t, p), η̃k(t, p)

∣∣
p0=0

= 0, (A.5)

where the momenta ranges in the sums and related definitions can be found in Section 3

of [6]. This implies for the momentum components the representation,

η̃0(t, p) =

T−1∑
x0=0

∑
x

cos(p0x0 + 1
2p0)e−ipx η0(t, x), (A.6)

η̃k(t, p) = −i
T−1∑
x0=1

∑
x

sin(p0x0)e−ipx−
i
2pk ηk(t, x), ηk(t, x)

∣∣
x0=0,T

= 0. (A.7)

Given these definitions, it is easy to work out the corresponding expectation values (A.2)

for the momentum components of the noise field. In particular, for the case of SF boundary

conditions, the only non-vanishing two-point functions are given by,

〈η̃a0 (t, p)∗η̃b0(s, q)〉 = TL3 δabδ(t− s)δpq(1 + δp00), (A.8)

〈η̃ak(t, p)∗η̃bk(s, q)〉 = TL3 δabδ(t− s)δpq(1− δp00). (A.9)
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For the case of open-SF boundary conditions the Fourier representation of the noise field is

given by,

η0(t, x) =
2i

TL3

∑
p

sin(p0x0 + 1
2p0)eipx η̃0(t, p), (A.10)

ηk(t, x) =
2

TL3

∑
p

cos(p0x0)eipx+
i
2pk η̃k(t, p), (A.11)

where again the momenta ranges in the sums as well as related definitions can be found in

Section 3 of [6]. This implies the representation,

η̃0(t, p) = −i
T−1∑
x0=0

∑
x

sin(p0x0 + 1
2p0)e−ipx η0(t, x), (A.12)

η̃k(t, p) =

T∑
x0=0

′ ∑
x

cos(p0x0)e−ipx−
i
2pk ηk(t, x). (A.13)

Given these definitions, in the case of open-SF boundary conditions the two-point functions

(A.2) for the momentum components of the noise field can collectively be expressed as,

〈η̃aµ(t, p)∗η̃bν(s, q)〉 = TL3 δabδµνδ(t− s)δpq. (A.14)

A.2 Basic two-point functions

For any non-zero momentum p a solution of the Langevin equation is given by,

Ãµ(t, p) =

∫ t

0

{
e−(t−τ)p̂

2

p̂2
(p̂2δµν − p̂µp̂ν) +

e−λ0(t−τ)p̂2

p̂2
p̂µp̂ν

}
η̃ν(τ, p) dτ, (A.15)

where here and in the following we assume for simplicity the initial condition Ãµ(0, p) = 0.

The above equation can conveniently be rewritten as,

Ãµ(t, p) =

∫ t

0

{
e−(t−τ)p̂

2

Tµν(p) + e−λ0(t−τ)p̂2Lµν(p)
}
η̃ν(τ, p) dτ, (A.16)

by introducing the orthogonal projectors,

Tµν(p) = δµν −
p̂µp̂ν
p̂2

, Lµν(p) = δµν − Tµν(p) =
p̂µp̂ν
p̂2

. (A.17)

For p = 0, instead (and thus for SF boundary conditions), we have that the only non-

vanishing Fourier component of the field is,

Ãµ(t, 0) = δµ0

∫ t

0

e−λ0(t−τ)/T 2

η̃0(τ, 0) dτ. (A.18)

Given the general solution of the Langevin equation we can now consider the basic two-point

functions of the theory. We will treat separately the case where the momentum of the gauge

potentials entering the two-point functions satisfies p0 = 0 or p0 6= 0.
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For any p0 6= 0 (and thus in all cases with open-SF boundary conditions), a few lines

of algebra show that the equal-time two-point functions of the gauge potential are given by,

〈Ãaµ(t, p)∗Ãbν(t, q)〉 =
1

2
TL3δabδpq

1

p̂2

[
Tµν(p)

(
1− e−2tp̂

2

) + λ−10 Lµν(p)
(
1− e−2λ0tp̂

2)]
.

(A.19)

In the limit t→∞ one thus recovers the known results for these correlators [6,15],

lim
t→∞
〈Ãaµ(t, p)∗Ãbν(t, q)〉 =

1

2
TL3δabδpq

1

p̂2

[
Tµν(p) + λ−10 Lµν(p)

]
,

=
1

2
TL3δabδpq

1

p̂2

[
δµν + (λ−10 − 1)

p̂µp̂ν
p̂2

]
.

(A.20)

For all momenta with p0 = 0, given the relations (A.8) and (A.9), one immediately concludes

that,

〈Ãµ(t, p)∗Ãν(t, q)〉|p0=0 = 0, if µ 6= 0 or ν 6= 0. (A.21)

This noticed, the case where p0 = 0 but pk 6= 0 for some k = 1, 2, 3, is analogous to what

discussed above and one has that,

lim
t→∞
〈Ãa0(t, p)∗Ãb0(t, q)〉

∣∣
p0=0,p6=0

= TL3δabδpq
1

p̂2
. (A.22)

For p = 0, instead, it is easy to show that,

〈Ãa0(t, 0)∗Ãb0(t, 0)〉 = TL3δabλ−10 T 2
(
1− e−2λ0t/T

2)
, (A.23)

and thus,

lim
t→∞
〈Ãa0(t, 0)∗Ãb0(t, 0)〉 = TL3δabλ−10 T 2. (A.24)

In conclusion, we could explicitly show that at the lowest order in the coupling, the results

for the equilibrium theory associated to the modified Langevin equation (2.13) correspond

to those of the gauge fixed theory defined in [6].
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