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1. Introduction

In stochastic perturbation theory [1–5], the gradient flow equation must be solved

order by order in the gauge coupling. A gauge-damping term should preferably be

included in the equation in order to stabilize its numerical integration. These and

other details are discussed in this note.

The lattice theory is set up as in refs. [6,7]. Both SF [8] and open-SF [9] bound-

ary conditions are considered and the link variables are assumed to take values in

SL(N,C) rather than SU(N), as is the case in instantaneous stochastic perturbation

theory [10].

2. Flow equation

Only the simplest form of the flow equation is considered in the following, but the

computational strategies discussed are more generally applicable.

2.1 Equation without gauge damping

Let Sw be the tree-level O(a)-improved Wilson gauge action. The active link vari-

ables Vt(x, µ) at flow time t ≥ 0 are determined by the boundary condition

Vt(x, µ)|t=0
= U(x, µ) (2.1)

and the flow equation

∂tVt(x, µ)Vt(x, µ)
−1 = −wx,µg

2
0{∂

a
x,µSw(Vt)}T

a, 0 ≤ x0 < T, (2.2)
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where ∂a
x,µSw(U) denotes the partial derivative of the action with respect to the link

variable U(x, µ) in direction of the SU(N) generator T a.

The weight factor wx,µ in eq. (2.2) depends on the chosen boundary conditions.

For SF boundary conditions

wx,µ =

{

0 if x0 = 0 and µ > 0,

1 otherwise,
(2.3)

while for open-SF boundary conditions

wx,µ =

{

2 if x0 = 0 and µ > 0,

1 otherwise.
(2.4)

Assigning weight 2 to the spatial links at time 0 is required in this case for O(a)

improvement [11].

2.2 Gauge damping

As explained in ref. [6], the solution Vt(x, µ) of the modified flow equation

∂tVt(x, µ)Vt(x, µ)
−1 = −wx,µg

2
0{∂

a
x,µSw(Vt)}T

a +Dµωt(x), (2.5)

Dµωt(x) = Vt(x, µ)ωt(x+ µ̂)Vt(x, µ)
−1 − ωt(x), (2.6)

coincides with the solution of eq. (2.2) up to a time dependent gauge transformation,

for any field ωt(x) with values in sl(N,C) satisfying

ωt(x)|x0=T = 0 (2.7)

and additionally

∂kωt(x)|x0=0
= 0, k = 1, 2, 3, (2.8)

if SF boundary conditions are chosen.

A damping of the gauge modes can be achieved in this way by setting

ωt(x) =
3

∑

µ=0

∂∗µCt(x, µ) (2.9)
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Fig. 1. Labeling of the link variables at the edges of the plaquette in the (µ, ν)-plane

with lower-left corner x. The four Wilson lines on the right represent the products of

link variables contributing to the associated force components.

and

ωt(x) = (1− x0/T )
1

T 2L3

∑

y

Ct(y, 0) +
3

∑

µ=0

∂∗µCt(x, µ) (2.10)

for open-SF and SF boundary conditions, respectively. In these equations,

Ct(x, µ) =
1

2

{

Vt(x, µ)− Vt(x, µ)
−1

}

−
1

2N
tr
{

Vt(x, µ)− Vt(x, µ)
−1

}

(2.11)

takes values in sl(N,C) and

∂∗0Ct(x, 0)|x0=0
=

{

2Ct(x, 0) for open-SF bc,

0 for SF bc,
(2.12)

by convention (see sect. 3 for further explanations).

2.3 Force field

The first term in the force field

Ft(x, µ) = −wx,µg
2
0{∂

a
x,µSw(Vt)}T

a +Dµωt(x) (2.13)

can be evaluated by running through all plaquettes on the lattice and accumulating

the contributions to the force field at the edges of the plaquettes. The contribution

to Ft(x, µ) of the plaquette p shown in fig. 1, for example, is equal to

−
1

2
wx,µw0(p)

{

V − V −1 −
1

N
tr
[

V − V −1
]

}

, (2.14)

where

V = Vt(x, µ)Vt(x+ µ̂, ν)Vt(x+ ν̂, µ)−1Vt(x, ν)
−1 (2.15)
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is the Wilson loop labeled F0 in fig. 1 and w0(p) the weight of the plaquette in the

Wilson action.

The gauge damping term in the force field can be computed following the lines of

the previous subsection. First the gauge potential Ct(x, µ) is calculated on all links,

then the field ωt(x) and finally the gauge-covariant forward difference of that field.

2.4 3rd order Runge–Kutta integration

It is helpful to write the flow equation (2.5) in an abstract form

∂tVt = Z(Vt)Vt, (2.16)

where the gauge field Vt at flow time t is considered to be an element of a (high-

dimensional) Lie group and the force field Z(V ) an element of the associated Lie

algebra. The integration of eq. (2.16) proceeds in time steps of size ǫ. Assuming Vt

is known, the fields

W0 = Vt, (2.17)

W1 = exp
{

1

4
Z0

}

W0, (2.18)

W2 = exp
{

8

9
Z1 −

17

36
Z0

}

W1, (2.19)

W3 = exp
{

3

4
Z2 −

8

9
Z1 +

17

36
Z0

}

W2, (2.20)

are computed, where

Zi = ǫZ(Wi), i = 0, 1, 2. (2.21)

The last field, W3, can be shown to coincide with Vt+ǫ up to an error of order ǫ4.

3. Perturbation expansion

3.1 Stochastic fields

In numerical stochastic perturbation theory, the basic link variables are expanded

in powers of the coupling g0,

U(x, µ) = 1 + g0U1(x, µ) + g20U2(x, µ) + . . .+ gn0Un(x, µ), (3.1)
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up to the desired order n. The coefficients Uk(x, µ) are complex N × N matrices

satisfying some algebraic relations so as to ensure that U(x, µ) is in SU(N) (or

SL(N,C) in the case of ISPT) up to terms of order gn+1
0 (see appendix A).

3.2 Flow equation in perturbation theory

The time-dependent field Vt(x, µ) and the force field Ft(x, µ) can be expanded in

powers of the coupling too and the flow equation then turns into a system of equa-

tions for the coefficients Vt,k(x, µ) of the time-dependent field. At any given order

k ≥ 1 in the coupling, the equation to be solved is of the form

∂tVt,k(x, µ) =
3

∑

ν=0

∂∗ν∂νVt,k(x, µ)− δµ0
1

T 3L3

∑

y

Vt,k(y, 0)

+ non-linear terms, (3.2)

where the non-linear terms depend on the components Vt,j with j < k only and the

second term on the right is absent when open-SF boundary conditions are chosen.

Near the boundaries of the lattice, the boundary conditions deriving from the flow

equation are

∂∗0Vt,k(x, 0)|x0=0
= Vt,k(x, j)|x0=0

= 0, j = 1, 2, 3, (3.3)

for SF boundary conditions,

(Vt,k(x, 0) + Vt,k(x− 0̂, 0))
∣

∣

x0=0
= ∂0(Vt,k(x, j) + Vt,k(x− 0̂, j))

∣

∣

x0=0
= 0 (3.4)

for open-SF boundary conditions and

∂∗0Vt,k(x, 0)|x0=T
= Vt,k(x, j)|x0=T

= 0 (3.5)

for both.

Equation (3.2) implies that the gradient flow tends to smooth field components,

including the gauge modes, and eventually drives all of them to zero (cf. ref. [6]).

3.3 Numerical integration

The system of gradient flow equations can be solved along the lines of subsect. 2.4.

To this end, the force field, the exponential functions in eqs. (2.18)–(2.20) and the

fields Wi, i = 0, . . . , 3 are all expanded in powers of the coupling. The integration

rule then allows the field components to be computed recursively, from step to step

and from order 0 to order n in each step.
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Appendix A

Let

U = 1 + g0U1 + g20U2 + . . .+ gn0Un (A.1)

be a polynomial in the gauge coupling with complex N ×N matrix coefficients Uk.

For U to be unitary and unimodular up to terms of order gn+1
0 the conditions are

Uk + U †
k +

k−1
∑

j=1

UjU
†
k−j = 0, (A.2)

tr {Lk} = 0, k = 1, . . . , n, (A.3)

respectively, where the matrices Lk are defined through the expansion

lnU = g0L1 + g20L2 + . . .+ gn0Ln +O(gn+1
0 ). (A.4)

If U is nearly unitary, i.e. if the elements of the matrices

Ek = Uk + U †
k +

k−1
∑

j=1

UjU
†
k−j (A.5)

are orders of magnitude smaller than 1, the matrix can be reunitarized by replacing

Uk by the kth coefficient in the expansion of (1− 1

2
E)U . And if

ek = tr{Lk} (A.6)

does not vanish, but is much smaller than 1, the determinant of U can be reset to

unity by multiplication with the (complex) factor 1− e/N .
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