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1. Introduction

Over the past few years a lot of work has been invested to develop lattice
gauge theories, the ultimate goal being to resolve a number of puzzles in
elementary particle physics that cannot be addressed in a conventional
perturbative framework [1]. In particular, one hopes to calculate the
hadron spectrum and other low energy properties of quantum chromo-
dynamics (QCD) through a numerical simulation of lattice QCD. This
is a very ambitious program, which requires a lot of “technical” insight
and enormous computer resources. Progress is slow therefore and one
should not expect reliable results to come out soon. Other interesting
field theories such as scalar theories, Higgs models and pure non-Abelian
gauge theories, are however more amenable to numerical simulations and
this has led (and still leads) to a greatly improved qualitative and quan-
titative understanding of some of these systems.

The enthusiasm of lattice gauge theorists is mainly based on the fact
that numerical simulations provide a novel and widely applicable tool
to solve field theories that are otherwise untractable. But there are also
many other good reasons to study lattice field theories. An important
observation is, for example, that apart perhaps from stochastic quanti-
zation [2,3], lattice gauge theories are actually the only known consistent
regularization of non-Abelian gauge theories. Of course, in perturbation
theory one may alternatively use dimensional regularization [4,5] or the
BPHZL [26-29] finite part prescription, but these methods are strictly
perturbative and do not define the theory before one expands in powers
of the coupling constant.

Since a lattice theory is mathematically well-defined, it is also a good
starting point to derive properties of the model in a rigorous way or even
to “construct” the corresponding continuum theory [6,7]. Moreover,
conceptual questions can often be addressed on a more concrete level
on the lattice, than would be possible in a formal continuum approach
(quark confinement, the Higgs mechanism and the issue of “triviality”
8], for example).
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456 M. Luscher

In these lectures I would like to discuss three fundamental questions,
listed below, which arise in any lattice quantum field theory and which
should be answered mainly to gain conceptual clarity (some of the results
presented are, however, also of immediate practical value).

(1) In the most common formulation of lattice quantum field theory,
the lattice is a euclidean space-time lattice and the fields are (classi-
cal) random variables associated with the elements of the lattice. The
quantum mechanical interpretation of the theory then relies on the well-
known transfer matrix construction [9-17]. In particular, the notion of a
stable particle has an unambiguous meaning in this framework for any
value of the lattice spacing. What is less clear in this basically euclidean
setting, is how the scattering matrix for these particles can be defined
in a physically sensible way. Of course, one could always first take the
continuum limit and then apply one of the standard procedures (LSZ
[18] or Haag-Ruelle [19-22]). But this is often impractical, in partic-
ular, in numerical simulations the lattice spacing is never really small
compared to the physical scales in the model studied. Thus, a lattice
scattering theory is desirable and, using some recent results of Barata
and Fredenhagen [23,24], I shall show in section 2 how this can be done
in a nice way.

(2) It is usually not difficult to derive the weak coupling perturbation
expansion in lattice quantum field theories, but the Feynman rules which
one obtains are in all cases rather complicated, especially, the propaga-
tors are not rational functions of momentum. Thus, the lattice regular-
isation is unpractical for explicit high-order perturbative calculations.
Perturbation theory is, however, very useful to study the continuum
limit of lattice theories, i.e. to see whether the renormalization proce-
dure works in the expected way, whether Lorentz invariance gets restored
in the continuum limit and whether anomalies are properly reproduced,
to mention just a few examples. The appropriate tool to tackle these
questions is the lattice power counting theorem which has recently been
established by Reisz [34-36]. In section 3, I review this result and I also
explain, why the BRS-symmetry [39,40] (which is instrumental to the
proof of renormalizability of non-Abelian gauge theories) is unaffected
by the lattice [41,42].

(3) Due to the limitations of present day computers, numerical sim-
ulations of lattice field theories are restricted to rather small systems
with a few 100,000 lattice points at most. Thus, the space-time volumes
which can be accommodated are often not very much larger than the
physical scales in the theory and the results of the computations must
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therefore be expected to depend on the size of the lattice. Such finite size
effects have been observed in several numerical experiments. On the the-
oretical side, the situation is not fully understood. Especially in (pure)
non-Abelian gauge theories the volume dependence is very complicated
with several regimes depending on the ratio of the lattice size and the
dynamically generated correlation length. Precise formulae exist, on the
other hand, describing the final asymptotic approach of particle masses
and other quantities of interest to the infinite volume limit [44-57]. In
the third part of my lectures (section 4), the aim is mainly to illustrate
the above remarks and to provide an intuitive understanding for the
dynamical origins of the various finite volume effects.
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2. Particle scattering in euclidean lattice theories

2.1. Construction and interpretation of the transfer matriz

The transfer matrix formalism [9-17] is of course well-known — it now
even appears in text books — but I need to go through this old material
to prepare the ground for the discussion of particle scattering. For con-
creteness, I shall develop the concepts for a definite model, namely pure
SU(N) gauge theory on a 4-dimensional hypercubic lattice. The meth-
ods are however more generally applicable and carry over to essentially
any theory with only massive particles.

An SU(N) lattice gauge field is an assignment of a matrix U(z, u) €
SU(N) to every lattice bond with endpoints z and z+ /1, where 2 denotes
the unit vector in the positive p-direction (the lattice spacing is set
equal to one, i.e. ¢ € Z*, and p = 0,1,2,3). Initially, I shall assume
that the euclidean space-time lattice A is finite with a rectangular shape

T x L x L x L, where T refers to time and L to space. The boundary
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conditions on the gauge fields are taken periodic, viz.

U(.’II +To,p) = Uz, p), (v =0), (2.1)

U(z + Lo, p) = U(z, p), (v >0).
The dynamics of the model is specified by the Wilson action, which may
be written in the form

S =Y Y P, (22)

90 zEA p,v

where P, denotes the plaquette field,
Pﬂ"(x) = Re TI‘{]. - U(:I:, ”)U(x + ﬁa V)U(x + lA’a ”)_IU(xv V)_l}a (23)

and go is the bare coupling constant. The field P,,(z) and hence the
action S[U] are invariant under the gauge transformation

Uz, p) = U%(z, 1) = g(z)U(z, p)g(z + )~ (2.4)

for any field g(z) € SU(N) which respects the periodicity of the lattice
A
The objects from which all the physics described by the model is to

be extracted ultimately, are the expectation values

3
()= / I1 I1 (e, wolule-stey, (2.5)

z€A p=0

Z= / 1T f'[ dU(z, p)e=5Y1, (2.6)

z€A p=0

where O[U] (the “observable”) is any gauge invariant combination of
the field variables U(z, u) and dU(z, u) denotes the invariant measure
on SU(N). In the above formulation, lattice gauge theories look like
a classical statistical mechanical system with partition function Z and
thermal averages (O). The purpose of the transfer matrix construction
is to provide an equivalent representation of the model as a quantum
mechanical system in 3 dimensions with a Hilbert space H of physical
states, a Hamilton operator H and linear operators O corresponding to
the euclidean “observables” O.



Selected Topics in Lattice Field Theory 459

The definition of this quantum mechanical system is as follows. Let Ag
be the L x L x L spacial sublattice of A at time g = 0. We then consider
wave functions [V, where the argument V(x,k) (x € Ao, k¥ = 1,2,3)
runs through all SU(N) gauge fields on Ag. A natural scalar product for
such wave functions is

6= [ IT TT v msvrul (2.7)

XGAO k=1

The physical Hilbert space H is the space of all normalizable wave func-
tions 1[V], which are gauge invariant, i.e. which satisfy

Y[V =y[V] (2:8)

for all gauge transformations g(x), x € Ag.
We now proceed to define the transfer matrix T from which the Hamil-
ton operator H will later be derived. T is an integral operator acting in

H, viz.

(T)[V] = / I I] V' o) KV, VI, (29)

x€EAp k=1

where the integral kernel K[V, V'] is given by

KW, V= [ T[ dW(x)exp—AS[V, W, V"], (2.10)
XEAo

1 /

AS=— 3 {2X Qu® + Y (Qux) + Qux)}.  (211)
90 xeno k k<i

Here, Qp; and Qj,; are defined in the same way as Py (eq. (2.3)) with

U replaced by V and V', respectively, while Qg is given by

Qor(x) = ReTr{l = V'(x, )W (x + B)V (x, k)" W(x)™'}.  (2.12)

Thus, AS is equal to the action on the double layer of equal time hy-
perplanes shown in fig. 1, except that the space-like plaquettes are given
the weight %
From the above it should be rather obvious that the fundamental
identity
7 =Tr{T"} (2.13)



460 M. Luscher

<-_._

Fig. 1. Side view of a double layer of lattices Ag. The gauge field V(x, k)
lives on the upper layer and V'(x, k) on the lower one, while the auxiliary
field W(x) integrated over in eq. (2.10) sits on the time-like links connecting
the two layers.

holds, where “Tr” means the trace in the Hilbert space H. Moreover,
the euclidean correlation functions (A(z)B(y)...) of local, gauge invari-
ant fields A(z), B(y),.. can also be given a quantum mechanical in-
terpretation. The situation is especially simple, when these fields are
polynomials of the gauge field variables U(x, k) at a fixed time z¢ (such
as the plaquette field Pyi(z), for example). If A(z) is such a field, we
may define an associated operator A(x) through

(A()9)[V] = A0, x)p[V], (2.14)

where on the r.h.s. A(0,x) is to be evaluated for the gauge field V(x, k).
For 0 < zo < T we then have

(A(z)A(0)) = —;—Tr{TT'“A(x)T”A(O)} (2.18)

and a similar formula holds for the higher correlation functions and the
correlation functions involving different fields.

For fields A(z) which are combinations of gauge field variables from
several time slices, a representation like eq. (2.15) can still be derived,
but the definition of the associated operator A(x) is more complicated
in this case. For example, the plaquette operator Pox is an integral
operator with a kernel given by egs. (2.10), (2.11), where the integrand
in eq. (2.10) is to be multiplied by Qox(x). Equation (2.15) then holds
again if we reduce the powers of T by one to account for the fact that
Pox already includes one time step.
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The transfer matrix T is a bounded, self-adjoint operator which has a
completely discrete spectrum (for finite L). Moreover, all its eigenvalues
are strictly positive and the maximal eigenvalue )\ is not degenerate
[11,13-15]. Thus, the Hamilton operator

H = —In(T/o) (2.16)

is a well-defined (unbounded) self-adjoint operator in H. As usual, H is
interpreted as the energy operator of the model. By construction, H > 0
and there is a unique state |0), the “vacuum”, with H|0) = 0.

From the discussion so far it follows that the limit T — oo of the
expectation values (O) exists when O is a polynomial of the field vari-
ables U(z, 1). In particular, for the 2-point function (2.15) we have, at
T = oo,

(A(2)4(0)) = (0]A(x)e™*" 4(0)|0). (2.17)

The limit L — oo is less trivial and I shall not discuss it here, but just
assume it exists (as is the case for sufficiently strong coupling go [13,14]).

2.2. Localized one-particle states

For any positive value of the bare coupling go, one expects that in (pure)
SU(NV) lattice gauge theories the infinite volume ground state is unique
and that the model describes a number of interacting, massive stable
particles, the glueballs. The evidence for this expectation is not over-
whelming, but it seems to be the logically simplest possibility given the
strong coupling results and the asymptotic freedom of the theory. Any-
way, I shall here assume that this is the situation for the value of go
considered and develop the scattering theory for this case.

According to the most recent numerical simulations of the model (cf.
subsection 4.4), the lightest glueball is a singlet under lattice rotations
and the corresponding one-particle states |p) can therefore be labelled
by a momentum p in the first Brillouin zone. These (improper) states
are simultaneous eigenstates of H and of the unitary operators U(a)
which represent the translations by integer vectors a:

Hlp) = w(p)Ip), lpx| < =,
U(a)|p) = e"P2|p).

Here, the one-particle energy w(p) is some positive periodic function and

(2.18)

m = w(0) (2.19)
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Fig. 2. Qualitative plot of the energy-momentum spectrum showing the
isolated energy shell E = w(p) of the lightest glueball. The energy shells of
the other stable particles and the multi-particle continuum are contained in
the shaded area.

is interpreted as the mass of the particle. The energy-momentum spec-
trum at low energies is thus expected to look qualitatively as in fig. 2.
The normalization of the one-particle states may be chosen such that

(pla) = 2w(p)(27)*6p(p — q), (2.20)

where §p denotes the periodic é-function. As an “interpolating” field,
one may take the plaquette field

P(e) =) {Pulz) = (Pu(2)}, (2.21)

k<l

and, by adjusting the phase of the one-particle states, one may assume
that the associated field renormalization constant Z(p), defined through

(0IP(0)lp) = VZ(p), (2.22)

is real and positive (I have taken it for granted that the matrix element
(2.22) does not vanish). With these notations, the Kéllen-Lehmann
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representation of the two-point function of the plaquette field P(z) reads
(cf. eq. (2.17))

(P(z)P(0)) = /m T aE /_ W (—;i;—f;Be-lzolEﬁpxp(E,p),

HE.p) = S ELS(E — () + AE.P),

(2.23)

where p(E,p) > 0 is supported in the shaded area of fig. 2.
Normalizable one-particle states (wave packets) can be formed by

n=[ & VZ®) ppyim, (2.24)

—r (27)* 2w(p)

where f(p) is any smooth periodic function and the factor VZ is in-
cluded for later convenience. If f(p) is such that (f|f) = 1, the inter-
pretation of eq. (2.24) is that |f) describes a one-particle state with a
probability distribution of momentum equal to

&*p Z(p)
(27)3 2w(p)

|F(P)I*. (2.25)

An important and rather non-trivial observation now is that a glueball
in the state |f) is (essentially) localized in a bounded region R of space.
The precise meaning of this statement is the following. Suppose A(x)
is a local field such as the plaquette field 'Pk((x) or any other “observable”
and assume x is far away from the region R. A measurement of this
quantity in the state |f) gives the value (f|A(x)|f) in the average. If
the particle described by |f) is essentially confined to the region R, one
expects that the measurement of A(x) should give the same result as
in the vacuum state up to a small deviation. Thus, the glueball in the
state |f) is well-localized, if for all local polynomial fields A(z) one has

(FIAGOIS) = (0IA(x)[0) + e(x), (2.26)

where €(x) is rapidly vanishing for |x| — oco.

The proof that the state |f) as defined by eq. (2.24) does indeed have
this property is a bit technical, but I shall present it here in some detail,
because it involves an argument [23,24] which is really the key to the
scattering theory developed later. For simplicity, I shall only discuss
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Fig. 3. Plot of the cutoff function g(E).

the case where the glueball is at rest, i.e. where f(p) vanishes outside
a small neighborhood of p = 0. The maximal value En ., of the one-
particle energy w(p) for p in the support of f will then be below the
energy m where the shaded area in fig. 2 begins. Now we choose a
smooth cutoff function g(E) > 0 with a shape as in fig. 3 and it is then
possible to show that

1F) =D F(»)e(E)P(¥)[0), (2.27)

where f is the Fourier transform of f. Indeed, because the multi-particle
states have an energy of at least 7, the operator g(H) projects any state
on a one-particle state. To prove eq. (2.27), it is therefore sufficient (and
trivial) to work out the scalar product of the r.h.s. with the one-particle
basis vector |q) and to verify that it is equal to (q|f) for all q.

Our task is to show that the deviation £(x) defined through eq. (2.26)
is rapidly decaying for |x| — co. The strategy in what follows basically is
to approximate the matrix element (f |fi(x)| f) by euclidean correlation
functions and then to use the exponential clustering properties of these
functions as they derive from spectral representations of the type (2.23)
(with space and time interchanged).

Combining egs. (2.26), (2.27) and (f|f) = 1, we have

e(x) = > f3)* F(2){(01P(y)g(H) A(x)g (H)P(2)|0)

y)z

— (01P(y)g(H)* P(2)[0)(0]A(x)[0)}. - (2.28)

o
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For a local polynomial field A(z), the associated operator A(x) is
bounded and so are the other operators in eq. (2.28). Furthermore,
f (y) is rapidly vanishing for |y| — oo and the summations over y and
z can therefore be restricted to the cube

Cx) ={y € Z’ | lurl < r(x)}, (2.29)
1
r(x) = 5 max |z, (2.30)

if we allow for an error of order |x| ™%, where s is any integer.

We next consider the operator g(H) which is a well-defined but rather
abstract object. The idea here is to approximate it by polynomials in
the transfer matrix [23,24]. To this end first note that g(F) is a smooth
function of A = e~ F in the interval 0 < XA < 1. It can therefore be
expanded in a uniformly and rapidly convergent series of Chebyshev
polynomials in A (for a very readable intoduction to the basic properties
and uses of Chebyshev polynomials see [25]). When truncated at order
K, a polynomial approximation

K
gE) =Y a\®e*F 1 5(E) (2.31)
k=0

is obtained, where the error §x is bounded by
|6 (E)| < Cs/K?® (2.32)

for any power s. Furthermore, there exist constants a, b such that for
all K > 1, the coeflicients ach) satisfy

K
Z |a§ck)| < aebk, (2.33)
k=0

These bounds (egs. (2.32),(2.33)) are just general properties of the
Chebyshev expansion [25], which follow from the assumed smoothness
of g and the definition of the Chebyshev polynomials. The constants C,
and a depend on the detailed properties of g while b is related to the
growth of the coefficients of the Chebyshev polynomials as a function of
their order and can hence be chosen independently of g.
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If one now inserts eq. (2.31) in eq. (2.28), one obtains a 3-point func-
tion of the operators A(x) and P(y) which can be rewritten in the form
of a euclidean correlation function of the associated fields A(z) and P(y).
The result then is

K
ex)= Y a9 S fy) fa)A@)P)P()

k,j=0 y,2€C(x)
+O(K~) + O(x|™?), (2.34)
where z¢o = 0, yo = k, 2o = —j and the connected part of the 3-point

function is defined by

(A(2)P(y)P(2))" = (A(z)P(y)P(2)) — (A(=))(P(y)P(2))  (2.35)

(recall that (P(y)) = 0).
In the final step of the argument we make use of the (discrete) eu-
clidean rotation invariance of the theory to prove that

[{A(2)P(y)P(2))*"| < C exp(—mr(x)) (2.36)

for some constant C and all z,y,z with y,z € C(x) (cf. egs. (2.29),
(2.30)). Indeed, there are always at least r(x) lattice planes between
x and C(x) and if we declare the direction orthogonal to these planes
to be the “time” direction, the bound (2.36) follows immediately from
the quantum mechanical representation, analogous to eq. (2.17), of the
3-point function and the trivial estimate

[ e=™ = j0)(0] || e ™. (2.37)

Finally, we combine egs. (2.33)-(2.36) and obtain the bound
le(x)| < C" exp{2bK — mr(x)} + O(K~*) + O(|x|™*), (2.38)
which becomes |e(x)| < O(|x|™*) if we let K grow proportional to r(x)
with a rate smaller than m/2b. To sum up, we have shown that e(x)

vanishes faster than any inverse power of |x| and the glueball in the state
| f) is therefore well localized.
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2.9. Scattering states

The basic problem in scattering theory is to construct states which, for
large times, describe a number of localized particles (wave packets) run-
ning away from each other. For simplicity, I shall only discuss.the case
of elastic scattering of the lightest glueballs, although the generalization
to other channels is straightforward. As a preparation for the construc-
tion of the corresponding in- and out-going scattering states it is useful
to discuss how the physical situation of two well-localized, widely sep-
arated glueballs, characterized by wave functions fi(p) and f2(p), can
be approximately described by a state |f1, f2) in the Hilbert space H.

By an argumentation similar to the one applied in case of localized
one-particle states, the basic property of |fi, f2) is expected to be that
for all local polynomial fields A(z), B(y) one has

(fl,f2|A(x)B(Y)|f1,f2> = (f1|A(X)|f1><f2|B(Y)|f2>
+ -+ ¢e(d) (2.39)

with an error ¢(d) which vanishes rapidly as the distance d between the
wave packets fi and f; is made large (the dots in eq. (2.39) indicate a
number of terms as they arise from the cluster decomposition of the ma-

trix element on the L.h.s.). States satisfying eq. (2.39) can be constructed
by

[fr £2) = ol (F1)al (£2)]0), (2:40)
where the Haag-Ruelle creation operator at( f) is defined as follows
[23,24]. Let g(E,p) > 0 be a smooth cutoff function which is equal to
1 in a neighborhood of the one-particle mass shell £ = w(p) and which
vanishes for E < 0 and E > @(p), where @(p) is the (lower) boundary

of the shaded area in fig. 2. For t € R, x € Z* and any test-function
f(p) define

A ®dE [ d&Ep .
fex= [ [ Gt nie). (e
The definition of aJ[( f) then reads

al(f) = / dt > f(t,%) e P(x) e L. (2.42)
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It is easy to verify that aT( f) creates a one-particle state from the vac-
uum, viz.

af(£)l0) = 1). (2.43)
The adjoint operator a(f), on the other hand, satisfies
a(f)|0) =0,
(Hlo) (248

a(f1)al (£2)10) = 10){f1]12),

and is therefore a one-particle annihilation operator. In view of these
properties, the Ansatz (2.40) for a two-particle state looks promising,
but one still has to show that (2.39) is indeed fulfilled when the wave
packets f; and f; are shifted away from each other. The techniques
that we have applied to prove the localization of one-particle states can
however easily be generalized to the present case. The only new aspect
is perhaps that the matrix element (2.39) involves the time evolution
operator et at several places, but it always appears in conjunction
with a cutoff function g and what one does then is to approximate the
product of the two (rather than g alone) by polynomials in the transfer
matrix.

I would now like to proceed to discuss in- and out-going two-particle
scattering states. The physical characterization of an out-going state
| f1, f2 out) is that for large times ¢, it evolves into a state describing two
widely separated glueballs which move away from each other. The mo-
tion of a single glueball is determined by the energy-momentum relation

E = w(p), i.e. '
e_lHt|f> = |fe),

fi(p) = e f(p).

From the discussion above of localized two-particle states, it thus follows

that an accurate description of the envisaged out-going situation is given
by the state

(2.45)

al (fr0)al (f2,010), (2.46)
provided only that the wave packets |f; ;) and |f; ;) are indeed running
away from each other. Using stationary phase methods, it is possible to
show that this is the case if fi(p) and f2(p) have compact support and
if the corresponding ranges of group velocities Vw(p) do not overlap.

Summarizing the discussion so far, one expects that for wave packets
f1, f2 with the above properties the asymptotic relation

eI f1, f 0ut) ~ al(fi)al (£2,010). (2.47)
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holds and hence
i foout) = lim Ml (Aal(f00) (248

Of course, one still has to show that the limit in fact exists, but this can
be done by applying the techniques of subsection 2.2 once more.

If, instead of letting t — oo, one takes the limit ¢ — —o0 in eq. (2.48),
one obtains the in-going scattering state |fi, f2 in). Finally, scattering
states with sharp momenta may be defined through

3 /
|f1, f2 out) /(H 4 Z(p')f(pz)>lp1,pzout) (2.49)

L Gry 2

and the scattering matrix is given as usual by the scalar product of in-
and out-going states. Note that the construction of the scattering states
implies the free field normalization

(P}, Py in|p1, P2 in) = (P}|pP1)(P5IP2) + (P1|P2) (P2 |P1) (2.50)

(and similarly for the out-states).

2.4. LSZ type formula for the scattering matriz

The scattering theory developed above is conceptually satisfactory and
mathematically rigorous. However, the final expression (2.48) for the
scattering states involves the Haag-Ruelle creation operators aT( f)
which are rather unwieldy objects from the point of view of the eu-
clidean field theory we started off. More accessible are the euclidean
correlation functions of the plaquette field P(z) and I would now like to
show that the elastic scattering amplitude can actually be extracted in
a comparatively simple way from the 4-point function of P(z).

In continuum quantum field theories there is a well-known and rigor-
ous procedure (the “reduction” technique) which leads from the Haag-
Ruelle construction of the scattering states to a formula for the scattering
matrix in terms of the time ordered four-point function of the interpo-
lating quantum field (e.g. [22], p.256 ff). Using the real-time operator
field

P(t,x) = et P(x) e, (2.51)

this procedure can be carried over to the lattice, although a rigorous
proof of the existence of certain limits involved is not yet available. In
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any case, | have little doubt that the resulting formulae are correct.
Explicitly, they read

(P1, P2 out|ps, ps in) = (p1, P2 in|ps, p4 in)
+ i(27r)46(w1 + Wy — w3z — w4) 5P(p1 + P2 — P3 — p4) M,

(2.52)
4
M:{(H(Eg—wf)/\/_z_k) %74(E1,Q1;-~~;E4;Q4)} ;
k=1 Efza:-ui;
T 53)

where I have introduced the abbreviations wy = w(pk), Zxr = Z(px) and

[+ ifi=1,2

o= { 1 =g (254)

The function 74 is given by

4 4

2m)*8(Y_Ev)6p(Y_ ar) ma(Br,aus -3 o) =
k=1 k=1
4
/ dty - diy Z exp{i Z(Ektk — qrxx)}(2.55)
X100 Xq k=1

X (01T {P(t1,x1) - - Plta, x4)}|0)°"

(7{---} implies a time-ordered product such that the operators with the
larger time arguments ¢ come first).

Equation (2.53) is very similar to the well-known LSZ-formula for the
scattering matrix in continuum quantum field theories, the obvious dif-
ference being that the wave function renormalization constant Z(p) is
momentum dependent in general and that the analytical form of w(p)
is not known a priori. Another, more subtle difference is that the 74-
function (2.55) is not simply related to the euclidean correlation func-
tions of the field P(z) through a Wick rotation in the complex energy
plane. To understand what the relation is instead, it is helpful to first

study the simpler case of the two-point function (P(z)P(0)).
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Fig. 4. Analyticity domain of G2(q) (fat lines represent the singular set S).
The function 75 is defined along the imaginary axis, approached from left or
right depending on the sign of E.

Let ¢ = (¢°,q) be a euclidean four-momentum and consider the eu-
clidean propagator

Ga(q) = ) e " (P(2)P(0)). (2.56)

z

Using the spectral representation (2.23), we have

*© sinh F

Gala) = [ 4 pB.0) g me s

At fixed q, G2(¢q) thus extends to an analytic function of ¢° in the domain
Dy =C\ S,

8={q" | Reg’ = 0(mod 27), |[Im¢°| > m}

(see fig. 4). In particular, a Wick rotation may be performed and one
is thus led to define

(B, = 1Gale) ¢ =(i-IF, (2:59)

where E is real and € > 0 infinitesimal.

(2.57)

(2.58)
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At first sight one might expect that 7 is equal to the Fourier transform
n(B,q) = [ a3 P WOTPEOPOOH) (260

of the real time propagator. This is however not the case: using the
spectral representation (2.23) again, we have

(0T {P(t,x)P(0,0)}|0) =

(o] g dsq . (261)
29 _i(gx—E][t|)
[T B [ e (B ),
and hence
s ™ i oe 2F'
m(E,q) =1 /m dE'p(E ,q)—————E2 TET e (2.62)
which looks quite different from
o ] 3 hEI
. _ dE' o(E' sin . .
7B q) =+ /7; p(Eq) cosh E — cosh E' + e (2.63)

Still, an important observation is that the difference 7 (E,q) — 72(E, q)
extends to a holomorphic function of E in a strip around the real axis,
as one may easily prove from egs. (2.62),(2.63). In other words, 7 is
equal to 7 up to a non-singular term.

The above considerations can be readily extended to the case of the
four-point function. One first defines G4(g1,...,94) to be the Fourier
transform of the connected correlation function (P(z;)---P(z4)".
Then, using the spectral representation, one can show that G4 is an
analytic function of the energy components ¢?,...,¢} in a domain Dy
which is characterized by

4
> @ =0,

k=1
¢S (forall k), G +q; ¢S (forallk #j). (2.64)

In particular, for real Ej with Z:=1 E; = 0 one may define

X : 1 .
7a(E1,q1;...5 B4,q4) = ngG4(q1,---,q4), g = (1 —€)Ex, (2.65)
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and it is then possible to show that 74 differs from 74 only by terms
which are regular in at least one of the variables Ey or Ex + E;.

The import of this last remark is the following. Consider again the
LSZ expression (2.53) for the elastic scattering amplitude which involves
the function 74. In order that the matrix element M be non-zero, it is
necessary that 7, has the appropriate on-shell singularities to cancel the
factors E? —w? in the limit E}y = orw;. Since 74 differs from 7, only by
terms which are regular in some combinations of the energy variables,
the latter may be replaced by the first in eq. (2.53) without changing
the result. Thus, the final formula for the elastic scattering amplitude

M, as defined through eq. (2.52), reads

M={<H(Ei~wi)/\/5;> %$4(E1,Q1;---;E4,Q4)} )

k=1

where the Wick rotated euclidean 4-point function 74 is given by eq.
(2.65).

In infrared stable theories such as the ¢*-theory, G4(q1,...,q4) can
be calculated in perturbation theory and it is then easy to perform the
Wick rotation and to determine the scattering matrix from eq. (2.66).
The analytic continuation of the 4-point function should also not give
rise to any great difficulties in the strong coupling expansion of lattice
gauge theories, for example, but in a numerical simulation it seems hope-
less to try to proceed via eq. (2.66), because G4 is only approximately
calculable by this method and only for a finite set of euclidean momenta.
What would be needed is a formula which expresses the scattering ma-
trix directly in terms of the position space correlation functions of the
euclidean field P(z). Unfortunately, such a formula is not available
presently, but an effort is being made to close this gap [24]. Meanwhile
one may resort to a completely different method to compute scattering
lengths (and perhaps other low energy scattering matrix elements) which
is based on a set of relations between the volume dependence of the en-
ergy spectrum and certain elastic scattering processes in infinite volume.
As has been demonstrated recently [48,49,53,54] finite size effects on the
energy spectrum are relatively easy to observe in numerical simulations,
at least when the particle interactions are sufficiently strong, and the
prospects for this method are therefore rather good (see section 4 for
further details).
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3. Renormalization and continuum limit in perturbation theory

3.1. Ezamples and introductory remarks

As in continuum quantum field theories, the weak coupling expansion
of the euclidean correlation functions in lattice field theories is obtained
straightforwardly by expanding the functional integral about the clas-
sical minimum of the action. At any given order of the expansion, the
correlation functions are equal to a sum of terms each of which can
be graphically represented by a Feynman diagram. The corresponding
Feynman rules are specific to the lattice action chosen and may be rather
complicated, especially for gauge theories.

Consider for example the one-component ¢* theory on a 4-dimensional
hypercubic lattice with lattice spacing a. The action for this model is
usually taken to be

5=t T{ 5 2 0uel@)” + Jruela) + ot}
z n=0 :

Oup(z) = (p(z + aft) — p(z))/a. (3.1)

Thus, there is only one vertex in this case, viz.

>< =9 (32)

and the propagator is given by

— (232 g mZ)—l,
(3.3)

2 . /1
Pu = gsm(é-ap”).

Note also that the integration range for internal lattice momenta is the
Brillouin zone

B={peR*|lp.l < n/a}. (3.4)

For a > 0 and m? > 0, the Feynman integrals are therefore absolutely
convergent and the dependence on the external momenta is smooth.

In the limit a — 0, the propagator (3.3) converges to the continuum
expression (p®+m?) ™" and the Brillouin zone becomes R, i.e. the lattice

Y



Selected Topics in Lattice Field Theory 475

g %

(a)

Fig. 5. Examples of one-loop diagrams in the <p4 theory.

Feynman rules go over into the continuum rules. In particular, at tree-
level of perturbation theory, the continuum limit exists in the expected
way. At higher orders, the cutoff dependence of individual diagrams is
singular in general and the renormalization procedure must be invoked
before the continuum limit can be taken.

To illustrate the small a behaviour of Feynman integrals, consider the
one-loop graphs shown in fig. 5. The diagram (a) is proportional to

d*k
g (2m)*

Substituting k& — k/a and using a Feynman parameter representation
for the propagator, we have

Ji =

(k2 + m?)~1, (3.5)

J1= iz/ dte‘(‘”")ztf(t),
S (3.6)

£(t) = [ Io(2t)]"

where I, denotes a Bessel function. f(t) is an analytic function with an
asymptotic behaviour of the form

05 Sl e

The integral over t in eq. (3.6) hence stays finite for a — 0 and with a
little more work it follows that

Jp o~ L {ro + (am)?(r1 + s1In(am)?) + - -},

a—0 a2
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ro = 0.154933. (3.8)

Thus, the diagram (a) has a quadratic and a subleading logarithmic di-
vergence (they are both cancelled when the mass parameter m is renor-
malized).

The diagram (b) in fig. 5 depends on an external momentum ¢ and is
proportional to

7@ = [ Gl +mEF P ) 69

Especially, for ¢ = 0 we have

0

20 =52

Ju, (3.10)
and hence

J2(0) = —s1In(am)? —ry — 51 + O(a® Ina?). (3.11)
The subtracted integral J,(¢g) — J2(0), on the other hand, is convergent
for a — 0 as one may show using the Reisz power counting theorem

which I will present later. As a result we have

Atk
(2m)*

Ja2(q) S, TS In(am)* —r1 — s +/ (k% + m?)~!

x{((k+ 0 +m) 7 = (B +m?) T} 4+, (3.12)

which shows that the diagram (b) is logarithmically divergent in the con-
tinuum limit (the divergence is cancelled when the coupling g is renor-
malized).

For a general diagram D with L loops one expects that an asymptotic
expansion of the form

co L
D ~ a‘“’Zchla"(lna)l (3.13)

a—0
n=0 [=0

holds, where w > 0 is an integer which depends on the convergence
properties of D.and of its sub-diagrams. Symanzik has given arguments

for the validity of (3.13), along with an analysis of the structure of the
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coefficients ¢y, but for L > 2 a completely rigorous proof is still missing
[30-33].

As in other regularization schemes, the divergences of individual di-
agrams cancel in the sum of all diagrams of a given order provided the
theory is properly renormalized. In the BPHZL approach to renormal-
ization, one proceeds by the following three steps [26-29].

(1) To every diagram D a subtracted Feynman integral I is associated
by applying a Taylor subtraction operator to the Feynman integrand.
For the graph (b) discussed above, I'r is just equal to J;(g)—J;(0), but in
diagrams with more loops, subtractions are also performed for the sub-
diagrams in a nested way which is organized according to Zimmermann’s
famous forest formula.

(2) Using an appropriate version of the power counting theorem, the
subtracted integral Ir is then shown to be absolutely convergent in the
limit where the ultra-violet cutoff is removed.

(3) Finally, one proves that the subtractions made in step (1) can be
effected by adding appropriate local interaction terms to the action. In
renormalizable theories, the total number of such “counter-terms” is
finite and their addition can usually be interpreted as a renormalization
of the parameters in the original Lagrangian.

Steps (1) and (3) are of an essentially combinatoric nature and can there-
fore be carried over to the lattice without great difficulty [35,36]. An
important difference is perhaps that the subtraction operators must be
introduced in such a way that they correspond to local lattice counter-
terms, in particular, the periodicity in momentum space must be re-
spected. The main obstacle for the realization of the BPHZL program

@ on the lattice is that a power counting theorem for lattice Feynman dia-
grams must be found. Such a theorem has recently been established by
Reisz and in what follows I would like to explain his result for the case
where all propagators are massive.

3.2. Structure of lattice Feynman integrals

A Feynman integral on the lattice has the general form
Ip = / d*ky -+ A V(k,q;m,a)/C(k, g; m,a), (3.14)
B

where kq, ..., k1, are the loop momenta, ¢, ..., gg the external momenta
and m collectively denotes the mass parameters of the theory. The
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numerator V in eq. (3.14) includes all vertex factors and the numerators
of the propagators, while C' is the product of the denominators of the
propagators.

The only properties V is assumed to have are the following.

V1. There is an integer w and a smooth function F such that

V(k,q;m,a) = a”“F(ak,aq;am). (3.15)
Furthermore, F is 2n-periodic in the momenta ak; and a polynomial in
the masses am.

V2. The continuum limit
P(k,q;m) = lin%) V(k,q;m,a) (3.16)
Q—+

exists.

Note that P is a homogeneous polynomial in k, ¢, m of degree w (unless
P vanishes identically). The requirements V1 and V2 are not very
restrictive and are satisfied in all (local) lattice models I know of.

The denominator C in the Feynman integral (3.14) is assumed to have
the structure

I
C(k,q;m,a) = [[ Ci(li;m, a), (3.17)

i=1
where the line momenta [;(k,q) are linear combinations of ky,...,ky,
and ¢i1,...,q9g. An example for an admissible propagator function C;

is i? + m? with m; being one of the mass parameters of the theory. In
general, C; is required to have the following properties 1.

C1. There is a smooth function G; such that
Ci(liym,a) = a2Gy(al;; am). (3.18)

Furthermore, G; is 2n-periodic in the momentum al; and a polynomial
in the masses am.

C2. The continuum limit of C; exists and is given by

lin%) Ci(li;m,a) = B +m?, (3.19)

1 In his paper, Reisz makes stronger assumptions on the propagators than
those listed here. For the proof of the power counting theorem, properties
C1-C3 are however all what is needed.
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where m; > 0 is a combination of the mass parameters m.

C3. There are positive constants ag, A such that
ICi(li;m, a)| 2 A} + m}) (3.20)

for all a < ag and all I;.

This last requirement is of a somewhat technical nature, but it is in gen-
eral satisfied in purely bosonic theories and in models involving Wilson
M fermions, where the denominator of the propagator is proportional to

. 1 2 -
(1 4 am)p? + m? + 5(12 Zpipf, (3.21)
u<v

and thus satisfies (3.20) trivially. Staggered and naive fermions are ex-
cluded, however, because in these cases, the propagator functions C; are
of order 1 at some points at the boundary of the Brillouin zone while
(3.20) requires them to be of order a=? there.

For the validity of the power counting theorem, it is also necessary that
the line momenta [;(k, q) are natural. This term refers to the following
properties:

L1. For all line momenta we have

L E
l,'(k‘, q) = Z a,'jkj + Z baq (3.22)
3=1 =1

where a;; € Z and b;; € R.

L2. Define the linear combinations

L
p,‘(k) = Za,’jkj (3‘23)
Jj=1
and the set
L={ki,...,kL,p1,...,p1}- (3.24)
Suppose uy,...,ur are L linearly independent elements of L. Then we
have
L
ki = cijuj, (3.25)

j=1
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where c;; € 7.

The emphasis here is on the requirement that the coefficients a;; and
cij be integers and not just any real numbers. Property L1 guarantees
that a shift of the integration variables k; by an integer multiple of
27 /a results in a similar shift of the line momenta and hence leaves
the Feynman integrand invariant. The second property L2 says that
one could choose some of the line momenta as new integration variables
and still have the same integration domain and a periodic integrand.
For integrals which are associated to a Feynman diagram, it is always
possible to choose the loop momenta such that they coincide with some
of the line momenta and L1 and L2 are then satisfied automatically.

3.9. Degrees of divergence

Power counting on the lattice requires the definition of a degree of di-
vergence of the Feynman integrand relative to certain linear subspaces
(Zimmermann subspaces) of the space of loop momenta. Since it is not
entirely obvious how this degree should be introduced, it is useful to first
study the general one-loop case (L =1).

It is tempting to assume that a lattice Feynman integral is convergent
for a — 0 if the continuum limit of the integrand is absolutely integrable.
However, this is not the case: the integrand of the integral

Ir = /l; d*k Z(l — cos ak,)/(k* + m?) (3.26)

vanishes for a = 0 and is therefore integrable, but by substituting k —
k/a one quickly sees that the integral is in fact quadratically divergent.
Thus, a good definition of degree of divergence must not only refer to the
properties of the Feynman integrand in the continuum limit. One rather
needs a definition which characterizes the behavior of the integrand at
small a and large k of order 1/a.

With these considerations in mind, one is naturally led to the following
definitions, valid for one-loop integrals. Let deg V' be the integer v which
appears in the asymptotic expansion

V(Ak,gm,a/d) = KX+ OLarF2y, K#0 (3.27)

(v = —oo if the Lh.s. vanishes more rapidly than any power of A71).
The existence of the asymptotic expansion (3.27) is guaranteed by the
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assumed properties of V. Next, one defines degC' in exactly the same
way as deg V' and then sets

degIr =4+ degV — degC. (3.28)

The power counting theorem now simply states that the continuum limit
of the integral Ir exists if degIr < 0 and that it is given by

I
lim I = / d4kP(k,q;m)/1_'[l(l? +m}), (3.29)

where the integral on the r.h.s. is absolutely convergent. The proof of
the theorem for the present case is actually rather easy and is therefore
included in an appendix to this section.

To illustrate the theorem, consider again the subtracted one-loop in-
tegral Jao(q) — J2(0) (eq. (3.9)). In this case we have

V= (k* - (k+q)?)/(2n)",
(3.30)
C = (k* + m?)((k + 9)* + m?),

and hence degV =1, deg C = 6. It follows that deg Ir = —1 and the
continuum limit of Jy(¢) — J2(0) thus exists as anticipated.

I now proceed to discuss Feynman integrals with any number of loop
momenta. Here it is not sufficient to consider the overall degree of
divergence of the integral, but it is also necessary to study the behavior
of the integrand when only some of the momenta k; are large. This can
be expressed more precisely by introducing the notion of a Zimmermann
subspace. To this end consider again the set £ of momenta defined
through egs. (3.22)-(3.24) and suppose

ULy eeyUdyVlye e, VL—d, d>1, (3.31)

are L linearly independent elements of £. By property L2, one could
make a change variables and take uq,...,v;_q as the new integration
variables. A 4d-dimensional linear subspace H of the space of loop mo-
menta k& may now be defined by fixing vy,...,v_q. H is called a Zim-
mermann subspace where, by abuse of language, one does not distinguish
between subspaces corresponding to different values of vy,...,vp_g.
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- K-k,

Fig. 6. Example of a two-loop graph. Here we have £ = {k;, k2, —k1 — k3 }

and the non-trivial Zimmermann subspaces are obtained by fixing k;, kg or

k] + kg.

Since L is a finite set, there is a finite number of choices for the ba-
sis (3.31) and hence only a finite number of Zimmermann subspaces.
For example, for the graph shown in fig. 6 there are 4 of them.
Suppose now that H is a given Zimmermann subspace as described
above. We then define an associated degree of divergence through

degylr = 4d + degy V — degy C, (3.32)
where deg V' is equal to the integer v in the asymptotic expansion
V(k(hu,v),g;m,afA) = KX+ o), K#0, (3.33)

and degy C is defined similarly. Thus, degyIr is just the degree which
one would naturally associate with the integral when the momenta
v1,...,V—q are fixed and only the variables uy,...,uq are integrated
over. In particular, for L = 1 there is only one Zimmermann subspace
and degyIr = deglr.

3.4. The Reisz power counting theorem

Having discussed all the notions needed, we can now write down the
lattice power counting theorem established by Reisz [34].

Theorem. Let IF be a lattice Feynman integral with all the properties
listed in subsection 3.2. Suppose in addition that degyIr < 0 for all
Zimmermann subspaces H. Then, the continuum limit of Iy exists and
is given by

I
lim Ir = / d*ky - .- Ak P(k,q;m)/H(l? + m?), (3.34)

a—
i=1
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where the integral on the r.h.s. is absolutely convergent.

This theorem can be considered the lattice version of the old power
counting theorem of Hahn and Zimmermann [26] which applies to con-
tinuum Feynman integrals. Some important elements of the proof of
the latter can actually be taken over to the present case, but the proof
of Reisz’ theorem is rather more complicated, mainly because the nu-
merator V(k, ¢;m,a) is allowed to be of a very general form. Thus, the
reader is referred to the paper of Reisz for the proof while I proceed to
discuss some of the implications and extensions of the theorem.

As explained in subsection 3.1, the BPHZ renormalization program
can be carried over to the lattice, the key step being the lattice power
counting theorem which is now at our disposal. As a result one obtains a
proof of renormalizability to all orders of perturbation theory for a large
class of lattice theories including the ¢*-theory and (massive) Yukawa
theories with Wilson fermions [35]. An interesting aspect of this proof
is that the addition of “irrelevant” terms to the action, such as

at Z{au@ﬁ +atr 24:(0,,50)4} (3.35)

z p=0

in case of the ¢*-theory, has no influence on the renormalized perturba-
tion expansion in the continuum limit. In other words, the continuum
limit is universal in perturbation theory, i.e. it does not depend on how
exactly one chooses the lattice action as long as it is local and has the
correct classical continuum limit.

With the obvious modifications, the lattice power counting theorem
also holds on hypercubic lattices of arbitrary dimensionality. A nice
application of the theorem in two dimensions has recently been described
by Golterman and Petcher [38]. They showed that the Wess-Zumino
model, appropriately latticised, indeed becomes super-symmetric in the
continuum limit, to all orders of perturbation theory and without fine-
tuning of the parameters in the action.

So far I have discussed Feynman diagrams with massive propagators
only. The power counting theorem can however be extended to the case
where some or all of the masses vanish [36]. One then also has to worry
about the convergence of the Feynman integrals for a > 0, because
massless propagators are singular at zero momentum and a product of
them may not be integrable. This problem is solved by introducing
appropriate infrared degrees of divergence and including an associated
convergence condition in the formulation of the power counting theorem.
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An important application of the power counting theorem for Feynman
diagrams with massless propagators is the proof of renormalizability,
to all orders in perturbation theory, of pure non-Abelian lattice gauge
theories with e.g. the Wilson plaquette action. To anybody who has
performed explicit perturbative calculations in this model it must be
obvious that this recent result of Reisz [37] is very non-trivial. The
difficulty is not only that the Feynman rules involve complicated ver-
tices of arbitrary order, but one also has to control the structure of the
counter-terms to such an extent that they can be shown to amount to
just a renormalization of the gauge coupling ¢go and of the normaliza-
tions of the gauge and Fadeev—Popov fields. As in the continuum, the
solution to this problem is based on an analysis of the Ward identities
which are associated to the Becchi-Rouet-Stora (BRS) symmetry of the
gauge-fixed action [39,40]. That the BRS transformation is also an ex-
act symmetry on the lattice may seem a little surprising, but as I shall
explain below, the existence of the BRS symmetry is essentially a group
theoretical lemma which does not in any way refer to the underlying
space-time structure [42].

3.5. Gauge fiting and BRS symmetry on the lattice

In lattice gauge theories, such as for example the pure glue theories
discussed in subsection 2.1, the perturbation expansion is obtained by
first fixing the gauge degrees of freedom and then performing a saddle
point expansion about the absolute minimum of the total action

Stotal = S + Sgi + Srp, (3.36)

where S denotes the original action, Sy the gauge fixing term and Spp
the Fadeev-Popov ghost action. I shall later write down the ghost ac-
tion explicitly for a simple choice of the gauge fixing condition. It is
possible to show from that expression that the total action has a BRS
symmetry [41], but due to the lattice complications, the proof is lengthy
and not very illuminating. Instead, I shall proceed on a slightly more
abstract level and the BRS symmetry will then easily be seen to be a
general property of the gauge fixing procedure (for a different, although
ultimately equivalent point of view, see [42])

It is well known that common gauge fixing conditions are stricken with
the Gribov copy problem — on a given gauge orbit there may be several
field configurations satisfying the gauge condition — and this is certainly
one of the reasons why, in non-perturbative calculations, gauge fixing
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is unpopular. The problem originates in the complicated, “non-linear”
geometry of the gauge group and the space of gauge fields. It can in
principle be avoided by splitting the configuration space in a gauge in-
variant manner into a number of disjoint sets and by employing different
gauge fixing conditions in these patches. For perturbation theory, gauge
fixing is, however, only needed in an infinitesimal neighborhood of the
classical vacuum configurations, because any field configuration which
is a finite distance away from the pure gauge orbit makes an exponen-
tially small contribution to the functional integral. As I shall explain in
more detail below, there are no topological obstructions against choos-
ing any particular (reasonable) gauge in a finite but sufficiently small
neighborhood of the classical vacuum and thus I shall restrict myself to
this situation in what follows.

As a concrete example, consider again the pure SU(N) gauge model
introduced in subsection 2.1 2. Because perturbation theory and the
gauge fixing procedure are unduly complicated in a gauge theory en-
closed in a periodic box (see e.g. refs.[43,62]), I here choose Dirichlet
boundary conditions instead to be able to bring out the essential points
more clearly. In any case, the choice of boundary conditions should not
matter in the infinite volume limit.

Thus, the space-time lattice A is here taken to be the cube

A={zeZ*|-L/2<2,<L/2 (u=0,...,3)}, (3.37)

where L is an integer, the lattice size. The link variables U(z,u) are

defined when = € A and z + & € A, and the sum over plaquettes in

the definition (2.2) of the action S[U] is to be restricted accordingly.
_a Dirichlet boundary conditions mean that we impose

U(z,p)=1 if z € OA and z + 1 € DA, (3.38)

where JA denotes the boundary of A. The set F of all such fields is
isomorphic to a (huge) power of SU(NV) and is hence a compact differ-
entiable manifold.

The elements g(z), = € A, of the gauge group G act on the gauge
fields U € F according to eq. (2.4). In order to preserve the boundary
condition (3.38), we require

g(z) =1 forallz € OA. (3.39)

% TIn particular, I again set the lattice spacing a equal to 1 in this subsection.
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Actually, the boundary conditions on U are preserved by all transfor-
mations g which are constant along OA, but it is only the restricted set
(3.39) of gauge transformations which will be fixed and the constant
gauge transformations then survive as a global symmetry of the system.
Thus, in what follows G denotes the set of all gauge transformations
g with the boundary condition (3.39) and it is this set which will be
referred to as the gauge group.

Obviously, G is a compact Lie group which acts in a differentiable
manner on the field manifold F, viz.

gEGUeFr—g-U=U€F. (3.40)

This action has the elementary properties
91-(92-U) = (9192) - U, (3.41)
1-U="U. (3.42)

A less trivial observation is that G acts freely on F, ie. g-U = U for
some U implies ¢ = 1. Indeed, this can quickly be shown by solving
the equation ¢g - U = U recursively for g(z) starting at the boundary
OA where g(z) is known to be equal to 1. An important consequence
of this property of the gauge transformations is that the orbit manifold
M = F/G is a differentiable manifold and that moreover the field space
F can be regarded as a principal G-bundle over M. Actually, in the case
at hand, this general statement is trivial to verify: in every gauge orbit
there is a unique element U with

U(z,0)=1 forallz € Awith —L/2 <z <L/2-2, (3.43)

and any other element U in the orbit can be written uniquely as U = ¢-U,
where g€ G. In other words, M is isomorphic to the manifold of all
fields U € F with the above property and

F=0GxM, (3.44)

i.e. F is a trivial bundle over M.

From now on I will proceed on a somewhat more abstract level and
just assume the space F and the goup G have the general properties
mentioned above, but are otherwise arbitrary. We are then interested in
integrals of the form

I= /Jr du(U) £(U), (3.45)
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where du(U) is some measure on F and f(U) some integrable function,
both being invariant under the action of G. More specifically, I will only
consider the case where f(U) vanishes outside a small neighborhood of
the orbit [Uy] passing through a point Uy € F, which I will refer to as
the vacuum configuration. As discussed above, for the applieation to
perturbation theory, it is sufficient to study this case.

Before I can explain how the gauge fixing is done in the integral (3.45),
I need to introduce some further notation. Let T*, a = 1,...,dg, be a
basis of the Lie algebra Lg of G, and X = X,T* a general element of
Lg (in what follows, I use the summation convention for repeated basis
labels a,b,...). For any differentiable function F(U) on F, define

6xF(U) =X, {aiYF(e‘Y . U)} . (3.46)
@ Y=0

By construction, éx is a first order differential operator, linear in X,
which satisfies

[6x,0v] = 81x,v] (3.47)

as a consequence of the group composition law (3.41). Next, let A be
any subset of F. We then define

W]={U€eF|g-U€eNforsomegeg}, (3.48)

which is just the union of all gauge orbits passing through N .
Gauge fixing begins by introducing a function F' (the “gauge fixing
condition”) with the following properties.

F1. F is a differentiable mapping from an open neighborhood N' C F
of the vacuum configuration Uy to the Lie algebra Lg of G.

F2. For any given U € [N, there exists a unique gauge transformation
g such that g-U € N and F(g-U) = 0. Furthermore, F(U,) = 0.

F3. For all U € N, we have det L(U) # 0, where L(U) : Lg — Lg is
the linear operator defined through

L(U)-X = 6xF(U) forall X € Lg. (3.49)

These properties imply that the solutions to the equation F(U) =0, U €
N, form a smooth submanifold which meets any gauge orbit passing
through N at exactly one point. Note that F(U) is not required to
be defined far away from the vacuum configuration Uy, since ultimatly
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we are only interested in perturbation theory and for this purpose it
is sufficient to fix the gauge locally around Uy (as we shall see). From
a mathematical point of view, the restriction to a neighborhood of Uy
implies the absence of topological obstructions, i.e. gauge fixing func-
tions always exist and in the concrete case of the SU(N) gauge theory
examples are easy to find.

Given a gauge fixing function F, the fundamental statement now is
the following

Lemma. For any function f(U) supported in [N], we have

[ @)@ = K [ au@)fw) det L)), 350)
F N

where K is a constant independent of f.

Proof: Let dg denote the Haar measure on G and set

X(U)={1 HUeN, (3.51)

0 otherwise.

Since du(U) and f(U) are gauge invariant, the r.h.s. in eq. (3.50) is
proportional to

[ au@)@) [ doxto-0)det Lo -0y a(F - D), (352
F G

where dg denotes the invariant measure on . By assumption, f(U)
vanishes when U ¢ [NV]. On the other hand, when U € [N], the inner
integral in eq. (3.52) can be evaluated as follows. According to property
F2, there is a unique h € G such that h-U € N and F(h-U) = 0.
Thus, the integral over ¢ only receives contributions from an infinitesimal
neighborhood of h. We may therefore substitute

g=e%h, (3.53)
and use X € Lg as the new integration variable. Noting
dg = dX {1+ O(X)},
F(g-U)=L(h-U) - X +0(X?), (3.54)

where dX is the usual translation invariant measure on Lg, the inner
integral in eq. (3.52) is seen to be equal to the sign of det L(h - U). By
property F'3, this is independent of U and the Lemma hence follows. I
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The expansion of the gauge fixed integral (3.50) in powers of the bare
gauge coupling gy would be straightforward, but for the discussion of
renormalization it is actually advantageous to first pass to yet another
form of the integral in which the delta function constraint is replaced by
an additon Sg[U] to the original action. To this end, choose a positive
definite and gauge invariant scalar product (X,Y) on the Lie algebra
Lg. Then, it is quite obvious (and one can show rigorously) that for
all Z € Lg with say (Z,Z) < e, the solutions to the equation FU) =
Z, U € N, form a smooth submanifold which meets any gauge orbit
- sufficiently close to the vacuum orbit [U] at exactly one point. With no
loss of generality, we may assume that this is true for all orbits passing
through A (if not, make A" smaller). The Lemma then holds unchanged
when the delta function in eq. (3.50) is replaced by §(F(U) - Z). Since
the integral on the left of eq. (3.50) is independent of Z, we can take the
average over all Z with (Z,Z) < ¢, using a Gaussian weight function,
and as a result one obtains

/ du(U)f(U) = K. / du(U) f(U)det L(U) et [U], (3.55)
F Ne

Here, K, is a new constant,

Ne={UeN | (F(U),FU)) < ¢} (3.56)
another open neighborhood of Uy, and
A
SulU] = 55 (F(U), F(U)). (3.57)
90

For later convenience, I have included a gauge parameter Ao and the
gauge coupling go in the definition of Sgy.

A crucial observation now is that the gauge fixed integral (3.55) has a
BRS symmetry which has exactly the same algebraic form (and also the
same uses) as in continuum gauge theories. To exhibit the symmetry,
we introduce Fadeev-Popov ghosts ¢ and ¢ to lift the determinant in eq.
(3.55) to the exponent as usual. ¢ and € are anti-commuting variables
taking values in the Lie algebra Lg, viz.

c=c,T?, é=¢,T°, (3.58)

[ca, 8]y = [€a, 8]y = [ca, @], = 0. (3.59)
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The integral on the r.h.s. of eq. (3.55) may then be written as

/N du(U)dede f(U) exp{—Sg[U] — Srp[U, c, 2} (3.60)
where
Srp|U,¢,¢] = (¢,L(U) - c). (3.61)
The claim now is that the BRS transformation
U—e“-U, (3.62) ™
c—ec+ s%cac,, [T°,T%], (3.63)
_ _ X
c— c+&:g—2F(U), (3.64)
0

where ¢ is an infinitesimal anti-commuting parameter, leaves the action
Sgt + Srp as well as the measure du(U) dedc invariant.

The proof of this statement is simple. First note that the BRS varia-
tion of Sy is given by

65y = —% (F(U), 6..F(U))

A
= _g—gs (F(U),L(U) - ¢) (3.65)
0
A< a result we have
-~
8Sgt + 6Srp = — (¢,6..L(U) - ¢) + (¢,L(U) - bc) . (3.66)
Next, we note

8ecL(U) - ¢ = ecacpbra bs F(U)

I

1
§€Cacb5[Ta ,Tb]F(U)

1
L(U) - 5ecacs [T°,T"], (3.67)

and the two terms in eq. (3.66) thus cancel giving 6(Sgs + Spp) = 0 as
asserted. I would like to emphasize that in the second step in eq. (3.67)
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we have made use of the representation property (3.47) of the differential
operators éx, which is quite crucial, since otherwise one would not know
how to get rid of the second order derivatives on F(U).

The BRS invariance of the measure du[U] follows from the observation
that the transformation (3.62) is just an infinitesimal gauge transforma-
tion. The invariance of the ghost measure dc, on the other hand, is due
to the fact that the group structure constants are traceless (in any ba-
sis), while d¢ is trivially invariant, because ¢ is only shifted by an amount
independent of €.

In the way I have presented the BRS symmetry, it is obvious that it is
a very general feature of the gauge fixing procedure, in particular, there
is no reference to the underlying space-time manifold. Whether it is a
lattice, a continuum or even not present at all, is therefore of no import.
Moreover, the gauge fixing function F(U) can be quite arbitrary, as only
the properties F1-F3 must be guaranteed.

I now proceed to show how the general formalism of gauge fixing and
the BRS symmetry translates into concrete expressions for the case of
the pure SU(V) gauge theory discussed at the beginning of this section.
For the vacuum configuration Uy, we make the obvious choice

Uo(z,p) =1 forallz,pu. (3.68)

In a sufficiently small neighborhood of this configuration any field may
be represented uniquely through

U(z, 1) = exp goAu(2),

3.69
4,(z) = A2(2)A%, (3.69)

where A%, a = 1,...,N? — 1, denote the (anti-hermitian) generators of
SU(N) and the gauge potential A,(z) is small, say |g0Aﬁ(x)| < e. The
boundary conditions on U(z, ) imply

Au(z)=0 ifze€dAandz+ i € OA. (3.70)
Infinitesimal gauge transformations g(x) have the form

g(z) =14+ wX(z), (3.71)

where X (z) is a field on A taking values in the Lie algebra of SU(N), i.e.
at every lattice point, X(z) is a traceless anti-hermitian N x N-matrix,
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and w is an infinitesimal parameter. The boundary condition on X(z)
is

Xiz) =0 if 2 €A (3.72)

Thus, the Lie algebra Lg of the gauge group G can identified with the
set of all such fields X (z), with the obvious commutator rule. A gauge
invariant scalar product on Lg is then given by

(X,Y)=-2) tr{X(2)Y(a)}, (3.73)

z€EA -~

where “tr” means the ordinary matrix trace.

Next, consider the differential operators 6x defined by eq. (3.46). If
we choose F(U) = Au(z) in that equation, with A,(z) given by eq.
(3.69), we have (after some algebra)

AdA,
— exp[—goAdA,(z))

dxAu(z) = T 9, X (z) + AdA,(2)X (). (3.74)

I here use the symbol “Ad” to denote the adjoint action of the Lie algebra
of SU(N) on itself, i.e.

AdA,(2)X (z) = [Au(2), X(2)], (3.75)

and the derivative appearing in eq. (3.74) is the lattice derivative (3.1).
From the general theory, we have

5X(5YAu) - 5Y(5XAII) = 6[X,Y]AI£7 (3-76)

a relation, which would be rather difficult to prove from the explicit
expression (3.74).
Now we choose the gauge fixing function F(U) to be

3 .
*A f
F(U)(z) = go Ep=0 au u(z) ifz e A\OA, (3.77)
0 if z € OA,
where 0}, is the adjoint lattice derivative, viz.
0,f(z) = f(z) — f(z — f1). (3.78)

The coupling gq is included in the definition of F' to make sure that F
is a function of U only and not a function of U and go. Note that F' is
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only well defined in an neighborhood of U, where the parametrization
(3.69) is valid. It is possible to show that this gauge fixing function has
all the required properties F1-F3 for a sufficiently small neighborhood
N of Uy independent of gq.

The explicit expressions for Sgt and Spp are now easily obtained by
inserting the above definitions in eqs. (3.49),(3.57) and (3.61). The result

1S

3
SetlUl==Y" > Xotr{0;A4,(z)8)Au(2)}, (3.79)
€A p,v=0
Sep[U,c,el = Y tr{cAppc}, (3.80)
TEA

3
g mAda)
rr = 30 { T e AL} 31

(the Fadeev-Popov ghost fields ¢(z) and &(z) take values in the Lie
algebra of SU(NV')). From here on the expansion of the functional integral
in powers of go is straightforward although algebraically complicated
due to the lattice artifacts. An important point to note is that the
restriction of the integral (3.60) to a small neighborhood of the vacuum
configuration Uj is of no concern to perturbation theory, because this
restriction is only felt at values of A, of order 1/go and hence would
only influence the calculation on a non-perturbative level.
Finally, the BRS symmetry assumes the form

0A,(2) = —gobecAu(2), (3.82)
dc(z) = egoc(z)e(z), (3.83)
8c(z) = eXo Y DrAu(z), (3.84)

pn=0

which looks very much the same as the transformation in continuum
gauge theories, except of course that the gauge variation dec A, is more
complicated on the lattice (cf. eq. (3.74)).
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Appendix 1. Proof of the lattice power counting theorem for
L=1

The idea of proof is the following. Let

X ={g Shed, (3.9

be the characteristic function of the Brillouin zone and define
f(k,g;m,a) = x(k)V(k, ¢;m, a)/C(k,g;m,a). (3.86) ™=

Now suppose we can find a function g(k, ¢g;m) > 0 which is integrable,
viz.

/00 d*k g(k, g;m) < oo, (3.87)

-0

and which satisfies

|f(k,g;m,a)| < g(k,q;m) (3.88)

for all k € R* and all a < ¢, where ¢ is some positive number (¢ and m are
kept fixed and are thus regarded as constants in what follows). By the
dominated convergence theorem of Lebesgue, we would then conclude
that

lin%) Ip = lirr%) d*k f(k,q;m,a)

:/ d*k lim f(k,q;m,a) (3.89)
— oo a—0 .
and since ;
lim f(k,q;m, a) = P(k,q;m)/[ [ +m?) (3.90)
i=1

pointwise, the theorem follows.

Thus, we only need to show that a function g(k, ¢; m) with the proper-
ties listed above exists. This will be achieved by establishing the bounds
1

|C(k,q;m,a)| > a(k? + §)3e8C, (3.91)

1 If degV = —o0, the inequality (3.92) holds with degV replaced by any
arbitrarily large negative integer.
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[V(k,q;m,a)| < y(k* + 8)2%8Y, (3.92)
for all k¥ € B and sufficiently small a (i.e. a < €). Here and below,
a, f3,... generically denote some positive constants. Given (3.91) and
(3.92), the choice

g(k,q;m) = 4(K* + 6)3%8V [a(k* + p)248C  (3.93)

has all the required properties, in particular, g is integrable since we
have assumed that deg Ir = 4 + deg V' — deg C is negative.

To prove the bound (3.91), we first note that the naturalness of the
line momenta (assumptions L1, L2) implies

E
li =a;k + Z biqi, (3.94)
=1

where a; € {1,0,—1}. It follows that for k¥ € B, the line momenta are
either inside B or at most a distance of O(1) away from B. In other
words, we may choose € > 0 such that fora<e, k€ Bandi=1,...,I
we have 3

Zl,- € B. (3.95)
We may also assume that € < ag so that the bound (3.20) on the prop-

agator functions C; applies. Now it is trivial to show that for line mo-
menta [; satisfying (3.95), we have

?>al. (3.96)

Hence, using (3.20), it follows that

I
|C(k,g;m, a)] > B [](ed? +m?) (3.97)
i=1
for all k € Bandall a <e.

In view of eq. (3.94), the factors in the above product can be bounded
by
kK46 if|a;| =1,
o etz {TF 40 21 (3.98)
6 if a; = 0.

As result one obtains (with new constants a, 3)

|C(k,q;m,a)| > a(k? + B)%c, (3.99)
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I
do =) lail. (3.100)
=1

Finally, from the definition of degC it is not difficult to deduce that
deg C = 2d¢ and the bound (3.91) thus follows.

To establish the bound (3.92) on the numerator V of the Feynman
integrand, we start from eq. (3.15) which I here write in the form

V(k’q; m’a) = a—wF(u,v), (3.101)

where u = ak and v = (ag,am) (u € R*, v € R™ for some n). The
definition (3.27) of v = deg V' then implies

F(u,sv) = O(s7), T=w-v2>0. (3.102)

This means that the first 7 — 1 derivatives of F(u,v) with respect to v
vanish at v = 0. Recalling Taylor’s formula

N
1 T
$(c +h) = ZO ~(h-8)7¢(2) + Rw,
"~ (3.103)
1 1
Ry =7 | dt(1=0¥(h-0)"+6(z + th)
- Jo
it follows that for 7 > 1 we have
F(u,v) = Z Z Upr * O, Hpy oo, (4, 0), (3.104)

p1=1 pr=1

where H,, ..., (u,v) are smooth functions which are explicitly given by

B o (8,8) = ﬁ/o dt(1— )71

L9 .0
Ow,, Ow,,

F(u,w + tv) . (3.105)

w=0

Now we distinguish two cases according to whether v < 0orv > 0. In
the first case, we note that u, v are confined to a bounded region when
k € B and a < ¢ so that from eq. (3.104) one immediately obtains

|F(u,v)| < alv|". (3.106)
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In other words, we have
[V(k,q;m,a)| < Ba”, (3.107)

and since k2 + § < ya~? (and v < 0), the desired bound (3.92) follows.

Finally, consider the case v > 0. Here we must also make use of the
assumption that the continuum limit of V(k,q;m,a) exists (property
V2). In terms of the function F, this condition is equivalent to

F(su, sv) o 0(s*). (3.108)

Note that » > 0 implies w > 0 (cf. eq. (3.102)). If we now combine egs.
(3.108) and (3.105), it follows that

Hy, ..., (su,sv) =, O(s"). (3.109)
Thus, applying Taylor’s formula again, we conclude that
|F(u, v)| < Jo]"Q(Jul, |v]) (3.110)

where () is a homogeneous polynomial of degree v and I have assumed
k € B, a < ¢ as usual. In other words, we have

[V(k,q;m,a)| < aQ(|k], B), (3.111)

and hence the bound (3.92). This completes the proof of the power
counting theorem in the one-loop case.

4. Finite size effects in massive theories

4.1. Basic facts

In numerical simulations of 4-dimensional lattice field theories at zero
temperature, one usually employs a T x L x L x L lattice with peri-
odic boundary conditions, where the time-like extent T is ideally much
larger than the basic correlation length in the system. The spacial size
L typically varies between 10 and 32 lattice spacings and is not easily
increased due to memory limitations. This situation is likely to improve
in the next few years through the development of more powerful hard-
ware, but the size dependence of the quantities calculated will remain a
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problem which has to be carefully analyzed if one wants to have results
with a quotable systematic error.

It is instructive to see what the finiteness of the lattice means in
physical terms in a concrete case. Consider for example a simulation of
lattice QCD on a lattice with L/a = 20. To have a reasonably large ultra-
violet cutoff Acyt = 1/a, the parameters in the action should be chosen
such that the lattice spacing is smaller than (say) 0.1 fm. For the box
size we then have L < 2 fm which is rather small. In particular, a proton
on such a lattice is squeezed and its properties (the mass for example)
are certainly affected in some way. Another important observation is
that the momenta of pions and other particles in this little world are
quantized in units of

Ap = 2% > 600 MeV. (4.1)

This is an uncomfortably high value (recall m, = 139 MeV) and it would
be a miracle if virtual pion processes were not strongly size dependent
under these conditions. Note also that Ap ~ m, would require a lattice
size L ~ 100 a, which is far beyond the sizes which can be accommodated
presently.

Finite size effects in theories with only massive particles have often
been seen in Monte Carlo simulations. A particularly well studied case
is the four-dimensional Ising model, for which Montvay and Weisz [48]
have recently produced very accurate data on lattices of variable size
L. One quantity they have considered is the mass gap M(L) in the
symmetric phase of the model (see fig. 7). Note that the cutoff Acy is
rather low in this example and values of L, which are relatively large
in units of M, are thus affordable. Figure 7 reveals that the finite size
effects on the mass gap M are rapidly decreasing for ML > 2 and are
reduced to a fraction of a percent for ML > 5. I will later provide a
theoretical explanation for this behavior and argue that it is typical for
the approach to the infinite volume limit in massive theories.

Before I proceed to discuss specific results, I would like to make the
following two simple but important remarks.

(a) The energy spectrum in a finite volume is discrete with a level spacing
which is often not small. This is certainly the case in the QCD example
considered above where the separation between the low-lying n-pion
states is essentially determined by the quantum Ap of momentum (and
the pion mass). Thus, unless L can be made very much larger than
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Fig. 7. Plot of the finite size mass shift AM = M(L) — M(o0) versus

the lattice size L in the 4-dimensional Ising model. The nearest neighbor spin
coupling is the same for all L and corresponds to aM(o0) = 0.4877(5).

the Compton wave length of the lightest particle in the theory, it is not
to be expected that the poles of correlation functions in the complex
energy plane arising from intermediate multi-particle states can mimic a
cut singularity very well. However, as I will explain later, the relatively
large splitting between successive 2-particle energy levels can also be
considered a good property of the finite volume theory, since the L-
dependence of these levels provides a handle to compute the strength of
the interactions between these particles.

(b) Since finite size effects refer to the scale L, which is usually much
larger than the lattice spacing a, one expects that they are not very
sensitive to the cutoff Acyt, but are mainly dependent on

2= M(L)L (4.2)

(where M(L) denotes the mass gap in the theory) and the dimensionless
renormalized couplings of the model. In fact, if the continuum limit
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exists in infinite volume, it should normally also be possible to take it
at finite values of z. In the following subsections, I will thus frequently
present the formulae in a continuum notation, although all of them could
also be derived on a lattice with some additional work.

4.2. Volume dependence of stable particle masses in simple models

Consider again the lattice (*-theory defined by the action (3.1) and
suppose the lattice shape is T x L x L x L with periodic boundary
conditions. I would now like to discuss the size dependence of the mass
gap M(L), which is defined as usual through the transfer matrix (cf.
subsection 2.2). Since the transfer matrix is independent of the time-
like extent of the lattice, we may just as well choose T = oo which is
convenient for the calculation that follows.

In this model, single particle states are generated from the vacuum by
the fundamental field ¢(z). Thus, if we define G (p) through

(#(2)p(0)) ng / W e+ (p), (43)

27 1

the energy wy (p) of the particle with momentum p in the box is deter-
mined by the pole of G (p) in the complex po-plane closest to the origin,
ie.
Gr(p)™' =0 for py = Fiwr(p). (4.5)

The finite volume mass gap is then given by M(L) = w(0).

In perturbation theory, Gr(p) and wr(p) can be computed straight-
forwardly. To lowest order the propagator is actually independent of L
and given by eq. (3.3). Thus, we have

wL(p) = —smh( awr(p))

= V/m? + b2 + 0(9).

At the next order, there is just one graph (fig. 5a) contributing to the
self-energy of ¢ and the result then is

M(L) = \/m? + %gJ + 0(¢%), (4.7)

A Z /_,,/a et ¥+ m?)7 (4.8)

(4.6)
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This integral depends on L and to see what its behaviour at large L is,
we must go through a number of steps.
First we use the Poisson summation formula

I3 Zf(p) > /_1r P P f(p)eiPmr (4.9)

n€zZ3

(which is valid for any smooth periodic function f(p)) to show that

J= Y A(0,nL), (4.10)

n€ezZ?

d4p eip:c
Az) = e, 4.
@ = [ o (410

Note that A(z) is just the Fourier transform of the (infinite volume) free
propagator. In the sum (4.10), the term with n = 0 is independent of L
and therefore amounts to a mass renormalization in eq. (4.7).

To evaluate the L-dependent terms, I will make the continuum ap-
proximation to be able to bring out the essential structure more clearly
(cf. subsection 4.1). The propagator then becomes

d4p eip:r:
(2m)* p?2 + m?

__1 —/mi?a|
e / dye , (4.12)

A($)|a=0 =

and for the finite volume mass M(L) one obtains

g_ 3 —VmityL |
= mL/dye +--, (4.13)

M(L) =

where the terms neglected are either of order g2 or exponentially small
compared to the displayed integral as L — oco. I have also renormalized
the mass parameter m such that here it is equal to the physical particle
mass in infinite volume and the coupling ¢ can also be identified with
(say) the renormalized coupling at zero momentum to this order.

In the Ising limit of the ¢* theory, eq. (4.13) compares very well
with the numerical data of Montvay and Weisz quoted earlier (fig. 7).
At the point where they did the Monte Carlo simulation, one has
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L/a M(L)L (AM/M)ezp (AM/m)n

4 2.248(2) 0.153(2) 0.12(1)

6 3.000(7) 0.025(4) 0.023(3)

8  3.934(6) 0.008(2) 0.006(1)
10 4.883(4) 0.001(2) 0.0015(2)

Tablel: Comparison between eq. (4.13) (last column) and results from a nu-
merical simulation of the 4-dimensional Ising model (same data as in fig. 7).

am = 0.4877(5) and g = 41(5). Inserting these values in eq. (4.13)
and neglecting the higher order corrections, one obtains the numbers
listed in table 1, which show good agreement between theory and ex-
periment. Thus, one may safely conclude that for mL > 4, the finite
size effects on the single particle mass are below 1% and exponentially
decreasing according to eq. (4.13).

The steps which led to the one-loop formula (4.13) can be generalized
to any order of perturbation theory and one then finds the following

remarkably simple formula for the leading size dependence of the particle
mass [44,45]:

1 3 —\/m?+y?L o ; —7L
T mL/dye F(iy)+0(e™™F). (4.14)

AM(L) = —

Here, m > 1/3/2m, and m denotes the physical particle mass in infinite
volume as before. The function F is the analytic continuation of the
forward elastic scattering amplitude

F(v) = M(p1,P2|P1,P2) (4.15)
(cf. eqs(2.52),(2.53)), where

v = (w(p1)w(p2) — P1 - P2)/m (4.16)

denotes the “crossing variable” and w(p) = \/m? + p? the relativistic
expression for the one-particle energy. At large L, the integral in eq.
(4.14) receives its dominant contribution from a small interval around
y = 0 and a saddle point integration then yields AM o L~3/2 exp —mL.
Thus, compared to the simple one-loop result eq. (4.13), no qualitatively
new size dependence of the mass gap is found at higher orders of per-
turbation theory. Essentially, the higher orders can be accounted for by
replacing the coupling ¢ in eq. (4.13) by —F(0).
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As shown by the derivation of eq. (4.13), the physical origin of the
L-dependence of the particle mass in this theory is that the vacuum is
polarized by the particle. A virtual particle in the polarization cloud
then has some probability to travel around the world and since this
process is absent in infinite volume, a small difference in the energy
of the polarization cloud (and hence in the observable particle mass)
results. It is obvious from this discussion that the effect is quantum field
theoretical in nature, in particular, it would not occur in non-relativistic
quantum mechanics.

Equation (4.14) generalizes to essentially any theory with only massive
particles which can be solved, at low energies, by perturbation theory
[44,45]. Depending on the spectrum of light particles and the symmetries
in the theory considered, the final formula for the finite size mass shifts
may involve several terms of the type (4.14). In particular, in a scalar
theory with non-vanishing 3-point coupling A, a “pole” term

2
_ A8 amip (4.17)
16mm mL

appears, which is more slowly decaying for L — oo than the integral
(4.14). It is important to appreciate that all these formulae are universal,
i.e. they do not depend on the details of the interacton Lagrangian,
but they only refer to the physical properties (particle spectrum and
scattering matrix) of the model. In view of this fact, I believe that these
relations are also valid in theories which do not have an infrared stable
perturbation expansion. The 2-dimensional non-linear o-model is such
a case and eq. (4.14) has actually been verified numerically [49] (the
scattering amplitude is known exactly in these models).

4.3. Models with a spontaneously broken discrete symmetry

A finite size effect of an entirely different kind from the one described
above occurs when the system considered has a spontaneously broken
discrete symmetry in the infinite volume limit. It is well known that
ordinary symmetries cannot be spontaneously broken in a finite vol-
ume with periodic boundary conditions, i.e. such symmetries are always
represented by well-defined unitary operators which commute with the
Hamiltonian, and, in massive theories, the true ground state is usually
not degenerate. In particular, it is a singlet under transformations by
the elements of the symmetry group G. Nevertheless, spontaneous sym-
metry breaking leaves a trace at finite L in that every energy eigenstate
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is in fact a member of a multiplet of d almost degenerate states with an
energy splitting which is much smaller than the typical energy difference
between successive multiplets. In general, the degeneracy d is equal to
the number of elements of G/H, where H is the subgroup of G which
remains unbroken in the infinite volume limit. At L = oo, these finite
volume multiplets become exactly degenerate and, through spontaneous
choice of one of the ground states, the degeneracy is effectively removed
from the spectrum, because it is impossible to reach the other states by
local processes. If one is primarily interested in the properties of the
model as L — oo, such as the particle mass spectrum, one should there-
fore be careful to not mix up one-particle states with the states that are
almost degenerate with the ground state and which ultimately decouple.
For numerical simulations, this is potentially a problem, since the gap
between these lowest states can be very small and hence introduces a
correlation length in the system much larger than the one associated
with the “physical” particles.

To obtain a better understanding of the effect described above, con-
sider again the p*-theory, but now we choose m? < 0 so that the model
is in the phase where the reflection symmetry ¢ — —¢ is spontaneously
broken. For L = oo, the field ¢ then assumes a vacuum expectation

value
{¢) = V/—6m?/g + O(\/9), (4.18)

and the physical particle mass is m' = v/—2m2+0O(g). The finite volume
ground state, on the other hand, is invariant under ¢ — —¢, and there
is another state with a small energy AE above the ground state, which
is odd under this symmetry. If we denote these states by |+) and |-)
respectively, we have

{(+lel+) = (~lel-) =0, (4.19)
[{+lel=)  ~ (o) (4.20)

—00
Accordingly, the two-point correlation function is, for large zg, given by
(p(2)p(0) = [(+lp|-)[? 7250, (4.21)
On the basis of this relation, it is possible to compute AE by numerical
simulation and also the matrix element |(+]¢|—)|, which can be consid-

ered a finite volume expression for the vacuum expectation value of .

Such a calculation has just been completed by Jansen et al. [53,54] and
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L/a AE/m' &/m'3

6  0.327(2)  0.0860(9)
7 0.207(1)  0.0762(8)
8  0.1176(7)  0.0694(6)
9 0.0571(4) 0.0652(6)
10 0.0230(2) 0.0626(6)

Table 2: Values of the finite volume energy gap AE and the “surface tension”
(4.26) from a numerical simulation of the 4-dimensional Ising model [53,54] at
a point where the physical particle mass m' is about 0.4 in lattice units.

in table 2 I show some of their data (2’nd column). The simulation was
done in the Ising limit of the ¢*-theory in four dimensions at a value
of the nearest neighbor spin coupling which corresponds to a physical
particle mass m' given by am’ = 0.392(1). I emphasize that it is not
easy to obtain these numbers, because AFE is small in lattice units and
one must therefore be able to follow the exponential decay (4. 21) of the
two-point function over distances of about 10 — 40 lattice spacings.

From table 2 one sees that AFE is a very rapidly decreasing function
of L and when m'L ~ 4, it is at most a few percent of the particle mass
m'. Qualitatively, this behaviour can be understood from the following
simple argument [50-52]. |

A typical field configuration in the statistical ensemble of the * theory
on a lattice with 7' > L looks schematically as in fig. 8. There are
relatively large intervals in time, where

Pz0) = 35 Zw) (4.22)

is close to either +(p) or —(p). Between these regions, ¢(zy) changes
sign, i.e. there is a Bloch wall. For large L, the free energy Fgw associ-
ated to such a Bloch wall is proportional to the volume,

Fgw = oL3, (4.23)
and, in the continuum approximation, it is easy to show that
o=2m'%/g+ 0(1). (4.24)

Furthermore, the width of a Bloch wall is determined by the scale m/
and it thus follows, that Bloch walls are dilute at large L.



506 M. Liischer

D I
+ -4+ +d 4+
- b b+ -

b b § ok + Bloch wall
Tle+ -4+ 44+
+EF A+
L (R e

R R R
R R R

—1

Fig. 8. Typical field configuration in the (*-theory in the broken sym-

metry phase (“+” and “—” indicate a positive and negative value of ¢(z)
respectively).

It is obvious from the above that the Bloch walls destroy the long range
order of the system and, by making a dilute gas Ansatz, the estimate

AE/m' = A(m'L)te "L (4.25)

is obtained for the associated correlation length (AE)~! [51,52].

The exponential factor in eq. (4.25) explains why AE is so rapidly
vanishing as L increases. If we define

. 1 '
0=-73 In(AE/m"), (4.26)

eq. (4.25) suggests that lim;_,., & = 0. As shown by table 2, the numer-
ical results of Jansen et al. for & are indeed slowly varying as a function
of L and apparently converge with increasing L. Furthermore, the value
of /m'? on the largest lattice happens to be rather close to the esti-
mate o/m'® = 0.065(2), which one obtains from the tree level formula
(4.24) by inserting the measured value g = 31(1) for the renormalized
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coupling !. Thus, little doubt remains that the theoretical explanation
of the energy gap AFE is correct and this then allows one to decide how
large the lattice volume must be to make sure that this kind of finite size
effect has a negligible influence on e.g. the (physical) particle spectrum
and the vacuum expectation value of the field.

4.4. The case of (pure) non-Abelian gauge theories
The size dependence of glueball masses in SU(2) and SU(3) gauge the-

ories (as defined in subsection 2.1), has been a debated topic for many
years now and it is not my intention here to review all the important
contributions which have been made. In particular, the analytic glueball
calculations are complicated and to explain them in any detail would re-
quire an additional set of lectures. Thus, I shall only summarize some
basic facts and illustrate them by the most recent numerical results.

From the definition of the transfer matrix T and the Hilbert space
‘H of physical states discussed in subsection 2.1, it is obvious that the
proper lattice rotations R are symmetries of the system which can be
represented by unitary operators commuting with T. The group SO(3, Z)
of all these rotations has 24 elements and 5 irreducible representations
as listed in table 3. Further symmetries are parity and the charge con-
jugation operation V(x,k) — V(x, k)*, which is equivalent to a gauge
transformation in the SU(2) case. Since these transformations commute
with the cubic rotations, the glueball states at zero momentum can be
labelled by quantum numbers I'PC, where I' denotes an irreducible rep-
resentation of SO(3,Z) and P = +, C' = + are the parity and charge
conjugation eigenvalues. Note that this classification applies indepen-
dently of the lattice size L.

In addition to the symmetries listed so far, there exist further trans-
formations, first described by t’ Hooft [58], which commute with the
transfer matrix and which are associated with our choice of periodic
boundary conditions for the gauge field, i.e. they do not survive in the
infinite volume limit. They are, however, important for the understand-
ing of the energy spectrum at finite L and I thus discuss them here in
some detail.

! Since these lectures have been delivered, the O(1) correction in eq. (4.24)
and also the constant A in the semi-classical formula (4.25) have been worked
out by Miinster [52]. A more careful analysis of the numerical data is hence
possible and an even more impressive matching between theory and “experi-

ment” is then observed [54].
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name dimension tensor model
Ay 1 trivial representation
Ay 1 trij, thij o< |erijl
E 2 trt, thi =0for k #1
T, 3 173
T, 3 trr, tri=0for k=1

Table 3: Irreducible representations of the cubic group SO(3,Z). R €
SO(3,Z) acts on tensors #x...; in the usual way and the tensors #j; occur-
ring in the models for E and T, are assumed to be trace-less and symmetric.

Suppose z = (21, 22, 23) is a triplet of elements of Zy,
2 =™V e {0,1,...,N — 1}, (4.27)
and define .
A.(x) = exp(z—u -x W), (4.28)
where W is the diagonal N x N matrix with

i
Woa = —N(l — Néon). (4.29)
Since W is trace-less and anti-hermitian, A,(x) is in SU(LV). Further-
more, we have

Ay(x+ Lk) = z3A,(x). (4.30)

It follows that the transformation
V(x,k) = C.V(x, k) = A, (x)V(x, k) A(x + &) ~! (4.31)
maps a periodic gauge field onto a periodic one and
(U:)[V] = 9[C]V] (4.32)

thus defines a unitary operator U, in M (it is not difficult to check that
U.¢ is gauge invariant when 1 has this property).

For any choice of z € Z%;, the associated operator U, commutes with
the transfer matrix T and we have thus established the group Z% as a
further symmetry of the system. At first sight one might think that the
transformation (4.31) is just a gauge transformation, but this is actually

-~
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not the case, because A(x) is not periodic. This implies, for example,
that Wilson loops winding around the world change by a phase zx under
the action of C,.

The possible eigenvalues of the operators U, are characters of Z3, and
are thus given by

U = (21)%(22)°%(23)*%, ex € Z(mod N). (4.33)

There are N* different choices for the quantum numbers e; (which 't
Hooft called “electric fluxes”) and the Hilbert space H accordingly di-
vides into N? sectors, which will later be referred to as the “electric
flux” sectors.

The ground state |0) of the theory can be shown to have quantum
numbers AT and e = 0 (recall that for L < oo, the spectrum of the
Hamilton operator H is discrete and the ground state is unique). As
discussed in section 2, glueball states are obtained by applying linear
combinations of local fields to the vacuum state and since local fields
commute with the transformations U,, it follows that these states are
also contained in the zero electric flux sector. States with |e| = 1 can be
generated from the vacuum by acting with a Wilson loop which winds
around the torus once in a space-like direction. This suggests that the
physical interpretation of these states is that they describe a flux tube
going around the world plus a number of glueballs or perhaps other
local excitations. In particular, the ground state energy AFE in the
sectors with |e| = 1 (which have an identical energy spectrum because
of rotational invariance), is considered to be the energy of a flux tube of
length L.

The above interpretation has actually been confirmed for strong cou-
pling go where Miinster [59] has been able to prove that

AE = oL 4+ 0(1), (4.34)
where o denotes the string tension which one defines through the static
quark anti-quark potential. Thus, most lattice gauge theorists take eq.
(4.34) for granted, even at smaller values of gg, where Miinster’s proof
does not apply.

Incidentally, it is interesting to note that if we assume the string model

to give an accurate description of the flux tube at large L, we would infer
that [60,61]

AE = oL+4k— g% +0(1/L?), (4.35)

L—
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where & is a constant and ¢ is the central charge of the string model. In
the simplest possible case, we just have two bosonic degrees of freedom
associated with the transverse fluctuations of the flux tube and hence
¢ = 2. In the string model,  is not universal, but in the gauge theory,
AE is an energy difference and the dimensionless ratio «/ v/o should
therefore approach a well-defined number in the continuum limit.

I now proceed to discuss some of the results on the energy spectrum
which have been obtained by perturbation theory and semi-classical
methods. First, it is possible to show that all eigenvalues of H can
be expanded in a power series of §*/3, where g is a renormalized “run-
ning” gauge coupling at scale L. For example, for the mass M (4th)
of the lightest glueball with quantum numbers ATt (and electric flux
e = 0), we have the asymptotic expansion

M(AF) ~ T e (P, (436)
k=1

where the coefficients &; are numerically known, for the SU(2) theory, up
to one-loop order (i.e. for k < 4) [62,63]. It is perhaps a little surprising
that broken powers of § appear in this expansion, but this is due to the
fact that some of the modes of the system are not harmonic to lowest
order of perturbation theory. More precisely, when one expands about
the classical vacuum configuration V(x, k) = 1, the potential energy of
the constant modes cj is found to be proportional to

- Ztr{[ckacl] [ckvcl]} 3 (4'37)

k1

i.e. there is no term proportional to tr {cz} Thus, the situation is
exactly as in a purely anharmonic oscillator, where the level splitting is
proportional to ¢%/3, as one may easily show by a rescaling of variables.
For the proper use of eq. (4.36), it is important to note that the expan-
sion is actually only valid when L is small compared to the dynamically
generated length scale A™! in this theory. The reason for this is that
g(L) is, according to asymptotic freedom, approaching zero for L — 0,

1
T 48727

7~ -2 InAL™Y, B (4.38)

while for L ~ A1, the coupling is presumably of order 1 and the pertur-
bation series (4.36) is then not applicable. Thus, as was to be expected,
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perturbation theory in this model tells us nothing about the approach to
the infinite volume limit and, in this respect, the situation is therefore
exactly opposite to what we found in the cases studied previously.

Still, it is interesting to see what the glueball spectrum at small L is,
because this provides an opportunity to compare with numerieal simu-
lations and, furthermore, it is also instructive to see how the individual
levels evolve as the volume is increased. It has become customary to
express the glueball mass ratios as a function of

z=M(ATH)L, (4.39)

which is a measure of the box size in units of the correlation length in
the A;r+ sector. Note that in the continuum limit, the mass ratios are
universal functions of z alone, in particular, the gauge coupling § drops
out in these relations.

From the apparent convergence of the perturbation expansion in the
SU(2) case [63], one would conclude that it applies up to about z = 1.5,
but later on I will show that already at z = 1 there is an interesting non-
perturbative phenomenon happening, which invalidates the perturbative
analysis. Thus, the range where perturbation theory applies is

0<z<1. (4.40)

For these values of 2, the glueball spectrum in the SU(2) theory is as fol-
lows [63] (similar results are obtained for SU(3) [71], but the calculations
are less complete in this case). Below 2M (A7) there are 6 glueballs with
quantum numbers and masses (at z=1) as listed in table 4 2. For z < 1,
the mass ratios M/M (A7) of these particles are practically independent
of z. Negative parity energy eigenstates also exist, but only above the
“two-particle” threshold 2M(A7).

An interesting aspect of table 4 is that the 8 and v glueballs, which
transform non-trivially under the cubic group, are actually the lightest
glueballs at z = 1, although they are not very much lighter than the a-
particle. Another observation is that the 8,v and ', ~' states are almost
degenerate. If such a degeneracy would occur at L = oo, the interpreta-
tion would simply be that the 8 and ~ glueballs are just different spin
states of a tensor glueball with spin 2 (from table 3 one quickly sees that

2 In the SU(2) theory, charge conjugation is a trivial operation (all states
have C' = +4) and C is hence not indicated in this case.
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name re M/M(A})

o A;L 1.00
B E* 0.86
5 TF 0.86
o Ai*' 1.65
g Et 1.56
~! T 157

Table 4: Glueball spectrum in the SU(2) theory at z = 1. All other states
have a mass M > 2M(Ai").

the J = 2 representation of SO(3) decomposes into E @ Ty, when the
group is reduced to SO(3,Z)). At z = 1, however, no such interpretation
is possible and the degeneracy must be considered accidental.

So far I have been discussing states with zero electric flux. It turns
out, however, that the energy spectrum in the sectors with e # 0 is
actually exactly the same, to all orders of perturbation theory, as in the
zero flux sector [62]. In particular, the flux tube energy AE vanishes
to all orders of g. The origin of this degeneracy is that for small g,
the ground state wave function ,[V] is essentially supported in the
neighborhood of the classical vacuum V4 (x, k) = 1 and the configurations
C.Vys. Thus, 9 consists of N*® pieces which do practically not overlap
and whose relative phases can therefore be chosen arbitrarily without
altering the energy of the state. In this way one obtains the ground states
in the sectors with an arbitrary electric flux e and these are therefore
degenerate. Evidently, the situation is similar to the one encountered in
the double well anharmonic oscillator, where the even and odd ground
states are also degenerate to all orders of perturbation theory.

At a non-perturbative level, tunneling between the classical vacua
C.V sets in and the degeneracy of the electric flux sectors is lifted. The
calculation of the associated tunneling amplitude is, for various techni-
cal reasons, extremely difficult and it is only after developing adequate
methods in simpler models that van Baal and Koller have been able to
solve this problem recently [64-69]. Their result for the flux tube energy
AE in the SU(2) theory reads

AE/M(AT) =0.00767 - 2*/% exp(—42.6169 - z~%/2 4 34.2001 - ~1/2)
x (14 0(z1%)), (4.41)

i
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Fig. 9. Plot of the ratio R = VAEL/z for the SU(2) theory. The full
line is the result of the analytic calculation by van Baal and Koller, while the
points are obtained by numerical simulation [75,77,78].

which gives AE/M(Af) = 0.1 at z = 1.34. When z is greater than this
value, AFE is very rapidly rising and at (say) z > 1.5, the semi-classical
formula (4.41) can no longer be trusted.

In view of this singular behaviour, van Baal and Koller thought of a
better although not equally rigorous method to compute AE for which
they have reason to believe that it applies up to z = 5. The basic idea
is to first identify the degrees of freedom which are most relevant for
the tunneling process. These have been known by the name of “torons”
for some time: they are just the constant Abelian gauge fields. Next,
one derives an effective Hamiltonian H' for the torons by “integrating
out” the other degrees of freedom systematically in perturbation theory.
Finally, H' is diagonalized exactly in a Hilbert space of wave functions
which obey certain boundary conditions as appropriate for the quantum
number sector one wants to consider (in the trivial but analogous case
of an anharmonic oscillator with a reflection symmetric potential V(z),
the diagonalization would be performed in the spaces of wave functions
¥(z), z > 0, with Dirichlet respectively Neumann boundary conditions
at z = 0).

A plot of AE as calculated by the method outlined above, together
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Fig. 10. Glueball mass ratios in the SU(2) theory. The solid line and the
full circles refer to the § particle, the dashed line and the open circles to the
v particle. The lines are from the analytical study by van Baal and Koller
(with an amendment by Vohwinkel [70]) and the numerical data are taken

from refs.[75,77,78] .

with some recent Monte Carlo points, is shown in fig. 9 3. The agreement
between theory and “experiment” is impressive, all the more so, since
no parameters are adjusted in these calculations. From the figure it
also appears that after the tunneling transition at z ~ 1.4, there is only
little size dependence so that the infinite volume estimate /o /M (A7) =
0.25(3) can be extracted with confidence. In view of this situation,
it is tempting to conclude that infinite volume behaviour is generally
established for (say) z > 4 as in the scalar theories we have considered
earlier.

Unfortunately, this does not seem to be the case, because if we now
consider the size dependence of glueball mass ratios (fig. 10), it appears
that the ratio of the 3 to the & mass is rising from around 1 at z = 5 to
about 1.5 at z = 10. While this result is based on only few Monte Carlo

3 The literature on numerical glueball mass calculations in pure SU(2) and
SU(3) gauge theories is extensive [72-85]. In figs.9 and 10, I only show a small
fraction of the available data, for the purpose of illustration. For a review of
the status of glueball mass calculations, see [86]

— LI 12A
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points, it seems unavoidable that something happens above z = 5, since
the E* and Tj" states must pair at large L to form a tensor glueball with
angular momentum J = 2, as explained above. However, one should not
be jumping to conclusions because a number of uncertainties still exists.
In particular, due to memory limitations, simulations at large = are done
on lattices, where the cutoff A = 1/a is almost as low as M (A7), so that
it would be rather strange if the mass ratios would be unaffected by
short distance lattice effects. Furthermore, one should make sure that
the excited states 3’ and 4’ are not confused with 8 and +, especially
in the intermediate z range, and finally the exponential approach to the
infinite volume limit, as described in subsection 4.2, should be observed.

It is obvious that the study of these questions requires precision cal-
culations of glueball masses on large lattices of variable size. Using
conventional numerical techniques, such calculations would be very ex-
pensive so that to make significant progress in this field, one probably
has to develop more effective updating algorithms, and also the oper-
ators used as interpolating fields need to be improved to yield better
signal to noise ratios. The history of glueball mass calculations however
shows that the pure non-Abelian gauge theories are more complicated
(and also more interesting) than expected and it is therefore well worth
to study them in even greater details than was possible so far.

4.5. Two-particle states in finite volume

In a free field theory of massive particles, the possible energy values W
of two-particle states in finite volume are

2

W =3 \/m?+p? (4.42)

=1

where m; and p; = (2r/L)n;, n; € Z3, are the masses and momenta
of the two particles. As emphasized in subsection 4.1, the quantum of
momentum Ap = 27 /L is often not so small. In such a situation the
splitting of the levels (4.42) is sizeable and it is therefore possible, in a
numerical simulation, to determine these energy values from a calcula-
tion of suitable four-point correlation functions. One may expect (and
we shall show) that this feature persists in the presence of interactions.
Thus, it is sensible to study the volume dependence of the individual
two-particle energy levels and we shall see that this results in an inter-
esting possibility to determine the scattering lenghts associated to the
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elastic scattering processes in the infinite volume theory. What follows
is essentially a summary of [46] and the reader is referred to this paper
for further details and proofs.

To find out how the two-particle energy levels (4.42) are affected by
interactions, I shall again use perturbation theory. It is possible to carry
out these calculations in the framework of quantum field theory, using
Feynman diagrams, but it is perhaps more instructive (and certainly
less complicated) to study the question in non-relativistic quantum me-
chanics. Thus, suppose we have two identical, non-relativistic particles
of mass m and spin 0 enclosed in a periodic box of size L. Such a two-
particle state can be described by a scalar wave function ¥(x,y) which
satisfies

Y(x,y) = ¥(y,x), (4.43)

and which is periodic with period L in all components of the arguments
x and y. The Hamilton operator H of the system is assumed to be of
the form

H=Hy+V, (4.44)
where the action of Hy and V on wave functions v is given by
1
Hop(%,Y) = —5—(As + A, )(x,Y), (4.45)
Vi(x,y) = Y V(x -y +nL)(x,y). (4.46)
ngZ3

Here, A;, Ay denote the Laplace operators with respect to x and y, and
the (real) function V(z) is assumed to be short ranged.

Since the Hamiltonian is translationally invariant, the total momen-
tum operator P commutes with H. In what follows, we only consider the
eigenstates of H with zero total momentum (no new interesting aspects
show up when P # 0). The corresponding eigenfunctions of the free
Hamilton operator Hy are the symmetrized planes waves

bp(X,y) = ePX=Y) | o=iP(x~y) (4.47)
which will be written as |p) in Dirac’s notation. Thus, we have

Ho|p) = 2¢(p)Ip), (4.48)

p2

«p) = -— (4.49)

T om’
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and the normalization may be chosen such that

<pllp> s 5P' P -+ 5pl —p- (450)

In this basis, the matrix elements of the interaction operator V are given
by

(¥'IVIp) = V@', D), (451)

[o.¢]
V(p',p) = / a3z {e-"(v’—r’)z + e—"(P’+P>Z} V(z). (4.52)

In the absence of interactions, the lowest two-particle energy value
is obtained for zero relative momentum (p = 0). Since this is a non-
degenerate eigenvalue of Hy, perturbation theory is straightforward and,
to second order in the interaction V, the corresponding exact eigenvalue
E of the full Hamiltonian is found to be

E= {900 - 5i—ak};ﬂf;(o,k)gff(k, 0+ (4.53)

This formula already tells us that the interaction implies a deviation
from the free particle energy E = 0 by an amount of order L3, which is
small compared to the next-to-lowest two-particle energy, at least when
L is sufficiently large. For L — oo, the sum in eq. (4.53) may be replaced
by an integral and we then have

P= 55 {005 [ V0050 + ) s

up to terms of order L™%.

The curly bracket in eq. (4.54) is independent of L and is in fact re-
lated to the scattering matrix in infinite volume for particles interacting
through the potential V(x — y). Indeed, the terms shown are just the
first two contributions to the Born series for the scattering matrix at
zero momentum and the result thus is

4rag
mL3

+O(V2L™) + 0(V?), (4.55)

where ag denotes the scattering length for S-wave elastic particle scat-
tering.
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L/a (AW/2m)e,p (AW/2m),

4 0.364(8) 0.468
6 0.124(7) 0.117
8 0.046(8) 0.045
10 0.022(5) 0.022

Table 5: Comparision between eq. (4.57) (last column) and data obtained by
a numerical simulation of the four dimensional Ising model [48].

The asymptotic formula (4.55) can be improved and generalized in
several respects. First, the analysis can be carried on to any order of
perturbation theory. Second, the corrections of order L™* (and higher)
can be determined by keeping the subleading terms when taking the large
L limit of the momentum sums involved in the perturbation expansion.
For example, for the sum appearing above, we have

m
L3Zv0kk— (k,0) = /d3kv0k)k2V(k 0)
k#0 (4.56)

+ <mlP(0,0) + 0(1/1%)

where ¢ = —0.225784 96 is a geometric constant, similiar to Madelung’s
constant, which is related to the three dimensional momentum lattice.
Finally, the whole derivation can be repeated for relativistic quantum
field theories. After all these steps are taken into account, the result for
relativistic identical bosons reads [46,47]

47‘('0,0 2 —6
W =2m — — 1+ c1 D b el L2 + O(L™°), (4.57)
¢ = —2.837297, (4.58)
c2 = 6.375183, (4.59)

ag being the scattering length as before. Note that all explicit reference
to the potential has disappeared from this formula, i.e. its form is uni-
versal similarly to what we have found in the case of the single particle
finite volume mass shift.

In the numerical study of the four-dimensional Ising model by Mont-
vay and Weisz quoted earlier (cp. subsection 4.2), not only the size



Selected Topics in Lattice Field Theory 519

dependence of the particle mass was determined, but it also turned out
that a calculation of the lowest two-particle energy W is feasible by a
straightforward analysis of the exponential falling off of a suitable four-
point function of the spin field at large times. At the point where the
data were taken, the particle mass m and the scattering length ao are
approximately equal to 0.4877 and —0.68 in lattice units (ag is computed
from the measured values of m and the renormalized coupling at zero
momentum, using renormalized perturbation theory up to two loops).
Inserting these values into eq. (4.57), one obtains column 3 of table 5,
where I have defined AW = W(L) — 2m. The agreement with the “ex-
perimental” values is very good for L/a > 6. Note that by table 1, the
finite size mass shift AM/m is already rather small and exponentially
decreasing for these values of L.

In the above example, it is obvious that the scattering length ag could
have been determined rather well from the numerical data alone by fit-
ting the two-particle energy values W for L/a > 6 with the asymptotic
formula (4.57), ag being the fit parameter (the mass m is assumed to be
known from the exponential decay of the spin two-point function). Thus
it has been demonstrated that the observation of finite size effects can be
used to calculate certain scattering matrix elements, and, of course, one
hopes that the method will also be useful in other more complicated the-
ories where the scattering matrix is not known beforehand from analytic
studies.

Finally, I would like to remark that eq. (4.57) can be generalized easily
to the higher two-particle states (those where the particles have relative
momentum p # 0) and it is also possible to treat spinning particles in
much the same way. For an application to the 7m- and 7 N-system see
[46] (finite size effects in QCD, in various kinematical situations, have
also been studied recently by Leutwyler and Gasser [55,56], using chiral
perturbation theory).

4.6. Resonances

In QCD, the Higgs model and in many other theories of physical in-
terest, the occurence of unstable particles (resonances) is a common
phenomenon. Their properties are often well-known experimentally and
it is therefore important to compute them when a solution of the theory
is attempted by (say) a numerical simulation of the corresponding lat-
tice model. A conceptual difficulty then is that a resonance does not in
any simple way correspond to a well-defined eigenvalue of the Hamilto-
nian. In particular, without further insight, one should not expect that
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e.g. the p-meson mass in (unquenched) QCD can be determined simply
by computing an appropriate two-point correlation function on a finite
lattice and looking for its exponential decay at large times as if the p
was a stable particle.

In this last section, I would like to show that a resonance leads to
some peculiar finite size effects on the energy spectrum around the res-
onance energy. It could well be that these are observable in numerical
simulations when the resonance is sufficiently narrow and if simulations
on variable sized lattices can be afforded. In this case, the mass and
perhaps the width of the resonance would be calculable. The discussion
that follows is mainly qualitative; further details and formulae will be
given in [57].

To get a first impression on what the finite volume signatures of a
resonance can be, it is useful to study a very simple quantum-mechanical
model of two (identical) scalar particles moving on a line. Thus, the
system considered is as described at the beginning of subsection 4.5, the
only difference being that now the particle coordinates z and y are one-
dimensional. At zero total momentum, the wave function of the particles
depends only on the relative coordinate 2 = z — y and the stationary
Schrodinger equation reduces to

1 g2 i

{-— 37 TV}(2,0) = By(2,0), || < 5L, (4.60)
where I have assumed, for simplicity, that ) has finite range R < L/2
so that the terms with n # 0 do not contribute in eq. (4.46). For any
energy value E and in infinite volume, eq. (4.60) has a unique solution
¥(2,0) = ¢g(z) which respects the Bose symmetry (4.43), i.e. which is
symmetric under z — —z. In the range |z| > R, the form of this solution
is (up to normalization)

¢p(2) = e PlEl 4 2¥eipl2l (4.61)

where p = vVmE is the meson momentum and 6(p) the scattering phase
shift.

In finite volume, ¢g(z) is still a solution of the Schrédinger equa-
tion, but now not all (positive) energy values are allowed because the
boundary conditions

¢e(=L/2)=¢5(L/2),  ¢E(-L/2) = ¢}(L/2), (4.62)

-

P
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must be satisfied. In view of eq. (4.61), this amounts to
?i8(Peirl — 1 (4.63)

which is a non-linear equation for the momentum p. The possible finite
volume energy values E are thus given by E = p?/m, where p is any
solution of eq. (4.63).

Suppose now that the potential V is such that for some momentum
p = pr the scattering of the two particles on the line is resonant. Around
the resonance, the scattering phase shift then assumes the form

é(p) = 65(p) + ér(p), (4.64)

where ép is a smoothly varying function, the “background” phase shift,
and 8g the resonance contribution, viz.

1. Er—E+il'/2
6r(p) = 5 In E’;_‘Efﬁ (4.65)
Here, ER denotes the resonance energy, Er = p%/m, and T is the width
of the resonance which I assume to be much smaller than Eg. § r(p) is
close to zero for energies well below the resonance and then rises very
rapidly in the resonance region towards the high energy value 6 = .
For a phase shift as specified above, the pattern of the finite volume
energy levels around the resonance energy Eg can be determined graph-
ically as follows (see fig. 11). As explained above, we only have to solve
eq. (4.63), which I now rewrite in the form

pL = 27n — 26(p), (4.66)

where n is any integer. For p close to pgr, we may assume that the back-
ground phase shift §p(p) is independent of p to a first approximation so
that the graph of the function on the r.h.s. of eq. (4.66) looks qualita-
tively as the collection of solid curves in fig. 11. For fixed L, the Lh.s. is
just proportional to p and hence corresponds to a straight line in fig. 11
passing through the origin. At the points where this line intersects the
solid curves, eq. (4.66) is satisfied and a finite volume energy value is
found.

If we now vary L, the slope of the straight line in fig. 11 changes and
it is then quite obvious how the energy levels evolve as a function of
L. Qualitatively, the level pattern obtained in this way is as in fig. 12.
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Fig. 11. Graphical solution of eq. (4.66). The full lines represent the r.h.s.
of eq. (4.66) as a function of p (in arbitrary units) and the dashed line the
l.h.s., for some value of L. The solutions correspond to the intersection points

of these curves.

The most characteristic feature of this plot is that at the resonance
energy Er, the individual energy levels develop a plateau whose slope is
proportional to I'/ E, i.e. for a very narrow resonance, the plateaus are
practically horizontal. Thus, for most values of L, one will find a true
energy eigenstate in the range |E — Ep| < T and in this sense a narrow
resonance behaves like a stable bound state particle. However, as shown
by fig. 12, this energy level has a peculiar L-dependence, which does
not disappear as the volume is increased, but rather repeats itself in an
essentially periodic way. In particular, when L is close to the special

values
27

L,= I;(n — és(pr)/7), n € Z, (4.67)

one is inbetween the plateaus and there is actually no energy eigenstate
which could be unambiguously identified with the resonance there.
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Fig. 12. Qualitative form of the finite volume energy spectrum at energies
E near the resonance energy ER as a function of the volume size L. The
different levels correspond to different choices for the quantum number n in
eq. (4.66).

I now proceed to discuss resonances in four-dimensional quantum field
theories. The theoretical understanding here is still rather incomplete so
that I will restrict myself to a few simple remarks. Consider for example
a weakly coupled quantum field theory describing two scalar particles o

m» and 7w with masses m, and m, such that 2m, < m, < 3m,, and suppose
the interaction Lagrangian contains a piece which mediates the decay
o — 77 at tree level of perturbation theory. For small coupling then,
the o-particle will be a narrow resonance and a perturbative calculation
of the finite volume energy level pattern is feasible. To lowest order of
perturbation theory, the eigenstates of the Hamilton operator with zero
total momentum and with an energy less than 3m, are the vacuum,
the one-particle states and the ww-states. Thus, around the resonance
mass, the possible finite volume energy values are E = m, and E =
24/m?2 + p?, where p is quantized in units of 27 /L as usual.

When we now turn on the interaction, these energy levels are shifted
and they then become non-trivial functions of L. For general L, the levels
of interest are not degenerate and, repeating the perturbative calculation
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presented in section 4.5, one finds that the interaction affects them by an
amount proportional to L™, which is small at large L. An exceptional
situation occurs when the volume size L is equal to

2
Lo="Tin], neZd, (4.68)
Pr

where pp = 74/m2 —4m2 denotes the momentum of the pions at the
resonance. For these special values of L, the resonance mass happens
to be equal to a two-particle energy eigenvalue and to determine the
shift in these levels, we must therefore employ degenerate perturbation
theory. As a result of all these calculations, one obtains a level pattern
which looks very much the same as in fig. 12, with the characteristic
plateaus and the “holes” around the singular values (4.68) of L.

From a practical point of view, eq. (4.68) already contains a useful
information: it allows one to estimate how wide the resonance plateaus
are. For example, in recent numerical simulations of the O(4) non-linear
o-model (see e.g. [87]), a typical value of the o-mass is 0.5 in lattice
units. Since my = 0 in this case, we have pr = 0.25, and eq. (4.68) then
yields

L/a =25, 36, 44, 50,... (4.69)

for the values of L where strong mixing between the o-particle state and
the two-pion states is expected *. Obviously, to avoid large finite size
effects on the resonance mass, the lattice sizes L in actual simulations
should not come close to any of these singular values. Note that contrary
to the one-dimensional case, the spacing between the numbers in the
sequence (4.69) shrinks to zero as L — oo, i.e. the plateaus are less
pronounced and the resonance becomes increasingly difficult to observe
for large volumes. In any case, the plateaus are reasonably wide in the
example considered above and it is likely, therefore, that in most recent
calculations of the resonance mass in the O(4) o-model the “holes” in
fig. 12 were avoided.

It should be clear from the discussion so far that the finite volume
energy level pattern induced by a resonance deserves further study, both
analytical and numerical. In particular, the perturbative arguments
need to be worked out in greater detail in a field theoretical setting, and

4 Since the bound m, < 4my is not satisfied in this example, mixing with
2n-pion states, n > 2, is possible and this leads to further singular values of

L in the range L/a > 43.
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perhaps one is also able to find a way of how to extract the width of a
resonance from the energy level shape, assuming this is known from a
numerical simulation (cf. [57]).
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