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This is an extension of ref. [1], covering the case of non-zero physical fermion masses.

Moreover some of the basic results are cast into a new form which remains valid in

a larger range of m0 than previously allowed. The notation is taken over completely

and we initially assume that m0 satisfies the bounds (4.3). Only t-independent gauge

fields are considered.

11. Massive fermions

As for any other lattice Dirac operator satisfying the Ginsparg-Wilson relation, the

natural definition of the massive Dirac operator is

Dm = (1 − 1

2
am)D + m, (11.1)

where m is the bare mass parameter. In principle m can take any value, also negative

ones, but in the following discussion we shall assume that 0 ≤ am ≤ 2 for reasons

to become clear later.

The massive propagator can be obtained from the functional integral in 4+1 di-

mensions by adding the term

a4
∑

x

1

2
amq̄(x)q(x) (11.2)

to the fermion action (6.3), the boundary fields q(x) and q̄(x) being defined through

eqs. (6.1),(6.2). Explicitly this term reads

a4
∑

x

1

2
am

{

ψ(at, x)P+ψ(T − at, x) + ψ(T − at, x)P−ψ(at, x)
}

, (11.3)
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which shows that it is like a hopping term connecting the last time slice of the lattice

with the first. The total action is thus given by

SF = ata
4

∑

0<t<T

∑

x

ψ(t, x)Dmψ(t, x), (11.4)

Dmψ(t) = Dψ(t) +
am

2at
{δt,at

P+ψ(T − at) + δt,T−at
P−ψ(at)} . (11.5)

Note that Dm acts on the same space of functions as D, with the same boundary

conditions.

It is now evident that

∂

∂m
〈ψ(t, x)ψ(s, y)〉 = − 1

2
a5

∑

z

〈ψ(t, x)q̄(z)〉〈q(z)ψ(s, y)〉. (11.6)

The inverse of the two-point function 〈q(x)q̄(y)〉, when interpreted as integral oper-

ator in four dimensions, is hence linear in m. Taking eq. (6.11) into account, this

implies [2]

〈q(x)q̄(y)〉 =
2 − aDN

aDm,N
, (11.7)

Dm,N = (1 − 1

2
am)DN + m. (11.8)

An interesting special case is

〈q(x)q̄(y)〉|am=2
= 1 − 1

2
aDN (11.9)

which shows that the action of DN on any given source field can be computed by

setting am = 2. In general we have

(1 − 1

2
am)〈q(x)q̄(y)〉 = −1 +

2

aDm,N
(11.10)

and one thus obtains the massive propagator up to a normalization constant.

The determinant of Dm may be worked out similarly. First note that

∂

∂m
ln detDm = − 1

2
a5

∑

x

〈q̄(x)q(x)〉. (11.11)
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From eq. (11.7) one infers

− 1

2
a5

∑

x

〈q̄(x)q(x)〉 = Tr
{

(1 − 1

2
aDN )/Dm,N

}

=
∂

∂m
ln detDm,N . (11.12)

When combined with eq. (10.1) this yields

detDm = (1/at)
dF det{ 1

2
aDm,N}det{1 + (RR†)N}(det B+)N . (11.13)

All the mass dependence of detDm thus arises from the factor detDm,N .

12. Alternative expression for DN

We now rewrite DN in a different form which allows one to extend the range of m0

without running into singularities. To this end we introduce the operators

K± = 1

2
± 1

2
γ5atM(2 + atM)−1. (12.1)

The inverse of 2 + atM is well-defined for atm0 < 2, because the spectrum of this

operator is then strictly on the right of the imaginary axis. From the definition

(12.1) it is immediate that

K+ + K− = 1, (K±)† = K±. (12.2)

In particular, K+ and K− can be diagonalized simultaneously and have only real

eigenvalues.

Next we note that

K+ =

(

B+ C

0 1

)

(2 + atM)−1, K− =

(

1 0

−C† B−

)

(2 + atM)−1. (12.3)

Recalling eq. (7.1) it is then straighforward to show that

RR† = K−/K+. (12.4)

Note that K+ is guaranteed to be invertible if B is, since

detK+ = detB+/ det(2 + atM). (12.5)
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Fig. 2. The eigenvalues λ of aDm,N are contained in a region bounded by a circle

in the right half-plane. The radius of the circle decreases linearly from 1 to 0 in the

range 0 ≤ am ≤ 2.

In particular, the representation (12.4) is valid in the parameter range (4.3).

The operator DN may now be rewritten in the form

aDN = 1 + γ5

KN
+ − KN

−

KN
+ + KN

−

. (12.6)

The important point here is that this expression is manifestly analytic in m0 in the

extended range

m0 > 0, atm0 < 2, am0 < 2. (12.7)

The right-hand side of

detDm = (1/at)
dF det{ 1

2
aDm,N}det{KN

+ + KN
− }det(2 + atM)N (12.8)

thus has to be equal to detDm everywhere in this range.

From eq. (12.6) one also infers that ‖aDN − 1‖ ≤ 1. The spectrum of aDm,N

is hence confined to the circular region shown in fig. 2. In particular, zero-modes

are excluded for m > 0. Taking eq. (12.8) into account, one concludes from this

that Dm is invertible in the extended range of parameters. Eqs. (11.7)–(11.10) thus

remain valid in this range, provided the new expression is substituted for DN .

For m ≤ 0 it can happen that Dm,N has a zero-mode. Since Dm is singular under

these conditions, it is clear that this leads to various technical complications that
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should better be avoided. This is a limitation of the domain-wall fermion approach.

Dm itself is well-defined and invertible also for m < 0.

13. Large N limit revisited

The limit N → ∞ can easily be taken at all points in the range (12.7) by noting

that the simultaneous eigenvalues of K± are of the form 1

2
(1 ± ν) with ν ∈ R. As a

result one obtains

aD ≡ lim
N→∞

aDN = 1 + γ5 ǫ(K+ − K−), (13.1)

which is equivalent to

aD = 1 − A(A†A)−1/2, (13.2)

A = −atM(2 + atM)−1. (13.3)

Compared to Neuberger’s operator, the only difference thus consists in the factor

(2 + atM)−1 in the definition of A. Since this factor is local, bounded and has its

spectrum strictly on the right of the imaginary axis, the locality of D can again be

proved for all gauge fields with plaquette loops close to 1.

The large N limit is approached with an exponential rate

ω = ln
1 +

√
α

1 −√
α

, (13.4)

where α is the smallest eigenvalue of A†A. The corresponding generalized eigenvalue

equation reads

a2
t M

†Mψ = α(2 + atM)†(2 + atM)ψ. (13.5)

This is a well-posed problem in the parameter range (12.7), since the operator on

the right-hand side is guaranteed to be strictly positive.
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14. Accelerating the convergence at large N

So far we have assumed that M is of the form (4.2), but the final results quoted

above [eqs. (12.6),(12.8),(13.1)–(13.5) with K± given by eq. (12.1)] are actually valid

for any operator M satisfying

M† = γ5Mγ5, det(2 + atM) 6= 0. (14.1)

This can be shown by going back to the general formulae for the determinant and

the Green function of D given in sects. 2,3 and by working them out directly in

terms of K±. The solution matrix S(t), for example, is given by

S(t) = (1 + P+atM)−1(K−/K+)t/at−1P− (14.2)

and similar expressions are obtained for the other fundamental solutions (as before

one first considers the case where B and thus K± are non-singular).

One can make use of this fact to accelerate the convergence at large N by replacing

atM through an operator of the form

atM̂ = atM −
r

∑

k,l=1

Xkl wk ⊗ w†
l γ5. (14.3)

The idea is to choose the vectors wk and the hermitian matrix Xkl so that the small-

est eigenvalues λk of γ5A are replaced by larger values λ̂k while all other eigenvalues

are unchanged. In this way the exponent ω characterizing the approach to the large

N limit can be significantly increased with a modest computational effort. Evidently

all this is very similar to the acceleration method of ref. [3,4] previously employed

in the case of Neuberger’s operator.

So let us suppose that

γ5Avk = λkvk, k = 1, . . . , r, (vk, vl) = δkl, (14.4)

where r ≥ 1 is any fixed integer. If we set

wk = (2 + atM)γ5vk, (14.5)

(X−1)kl = 2δkl(λ̂k − λk)−1 +
(

vk, (2 + atM)γ5vl

)

, (14.6)
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a short calculation yields

Â ≡ −atM̂(2 + atM̂)−1 = A +
r

∑

k=1

(λ̂k − λk)γ5vk ⊗ v†
k. (14.7)

The operator γ5Â has thus the same eigenvectors as γ5A, with the same eigenvalues

except for those associated with the eigenvectors vk which are equal to λ̂k instead

of λk.

It follows from this that the corresponding operators D̂N and DN converge to the

same Dirac operator D if

ǫ(λ̂k) = ǫ(λk) for all k = 1, . . . , r. (14.8)

A possible choice of λ̂k is thus

λ̂k = ǫ(λk), (14.9)

which implies instantaneous convergence of D̂N on the subspace spanned by the

eigenvectors vk. One should however make sure that the matrix on the right-hand

side of eq. (14.6) is well-conditioned. There is enough flexibility in the choice of λ̂k

to achieve this without giving up the improved convergence properties of D̂N .
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