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1. Introduction

An exact implementation of the stochastic molecular dynamics (SMD) algorithm [1]

requires the inclusion of an accept-reject step at the end of the molecular dynamics

trajectories [2]. If Hamilton’s equations are integrated very accurately, using a 4th

order symplectic integrator [3], for example, the effect of the accept-reject step may

however be negligible with respect to the statistical errors.

In this note the long-time behaviour of the algorithm is examined and it is shown

that the process (with or without accept-reject step) converges to a unique stationary

state if the simulation step size ǫ is sufficiently small.

2. SMD algorithm

In order to keep the discussion as simple as possible, the pure SU(N) gauge theory

is first considered. A finite lattice is assumed and the Hamilton function is taken to

be of the standard separated form

H(π, U) = 1
2 (π, π) + S(U), (π, π) =

∑

x,µ

πa(x, µ)πa(x, µ), (2.1)

with S(U) being the gauge action. The exact form of the action does not matter, but

it must be a smooth function of the link variables U(x, µ) with uniformly bounded

derivatives, as is the case for the widely used actions. The (exact) SMD algorithm

[1,2] simulates the distribution

P (π, U) ∝ e−H(π,U) (2.2)
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by repeatedly applying three update steps (momentum rotation, molecular dynamics

evolution, accept-reject step).

2.1 Momentum rotation

This operation transforms the current fields π, U according to

Rǫ : π → c1π + c2υ, U → U, (2.3)

where υ is a Gaussian random momentum field with mean zero and unit variance.

The coefficients

c1 = e−γǫ, c2 = (1− c21)
1/2, (2.4)

depend on the molecular-dynamics time step ǫ and an adjustable parameter γ that

controls the rotation angle. Typically γ is taken to be of order unity and γǫ is then

a small number. Both ǫ and γ will be assumed to be positive.

2.2 Molecular dynamics evolution

The second operation, Iǫ, approximately integrates Hamilton’s equations

∂tπ(x, µ) = −∂x,µS(U), ∂tU(x, µ) = π(x, µ)U(x, µ), (2.5)

from the current time t to t+ ǫ using a reversible, symplectic integrator. A class of

such integrators is obtained by combining the elementary steps

Iπ,ǫ : π → π − ǫ∂S(U), U → U, (2.6)

IU,ǫ : π → π, U → eǫπU. (2.7)

The leapfrog integrator

Iǫ = Iπ,ǫ/2IU,ǫIπ,ǫ/2, (2.8)

for example, integrates Hamilton’s equations up to an error of order ǫ3 per step. In

this note, only integrators of this kind, i.e. short sequences of the steps (2.6) and

(2.7) with varying step sizes of order ǫ, are considered.
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2.3 Accept-reject step

The fields (π̃, Ũ) = Iǫ(π, U) obtained by integrating the molecular dynamics equa-

tions are accepted with probability

Pacc(π, U) = min{1, e−∆H(π,U)}, ∆H(π, U) = H(π̃, Ũ)−H(π, U). (2.9)

Otherwise, i.e. if the proposed fields are not accepted, the algorithm sets the current

fields to −π, U [2].

A complete update cycle consists of a momentum rotation, followed by the molec-

ular dynamics evolution and the accept-reject step. Note that the momentum rota-

tion applied in the first step is not undone in the last step if the proposed fields are

rejected.

3. Transition probabilities

The discussion of the long-time behaviour of the SMD algorithm later in these notes

is based on an analysis of transition probabilities and the theory of discrete Markov

processes (for an introduction, see ref. [4], for example).

3.1 Preliminaries

Let X be the phase space of the theory, equipped with the usual metric topology,

σ-algebra of measurable sets and integration measure. The states of the system thus

correspond to the points (π, U) of X , and these will often be denoted by a single

symbol such as s or s′. A discrete Markov process on X is described by a transition

probability T (s,A) with certain properties, where s and A run over the points and

measurable subsets of X , respectively.

The interpretation of T (s,A) as transition probability is as follows. Suppose µ is a

probability measure describing the initial distribution of the system and let A,B be

measurable subsets of X . Before the transition, the system is thus found in A with

probability µ(A). If it was in A, the probability to find it in B after the transition

is then
∫

A

µ(ds)T (s,B). (3.1)

Clearly, for this interpretation to be meaningful, T (s, ·) must be a probability mea-

sure for each s and T (·, A) a real-valued bounded measurable function for each A.
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Transition probabilities may be considered to be linear operators in the space of

signed measures on X , their action on a given signed measure ν being

(Tν)(A) =

∫

X

ν(ds)T (s,A). (3.2)

Their transpose T t with respect to the scalar product

(f, ν) =

∫

X

ν(ds)f(s) (3.3)

of signed measures ν and bounded measurable functions f on X acts on the latter

according to

(T tf)(s) =

∫

X

f(s′)T (s, ds′). (3.4)

Since T (s,X ) = 1 for all s, T t is a bounded linear transformation with norm 1.

Products of transition probabilities,

(T1T2)(s,A) =

∫

X

T2(s, ds
′)T1(s

′, A), (3.5)

are again transition probabilities according to the definition given here. The order

of the factors on the right of eq. (3.4) is chosen so that (T1T2)ν = T1(T2ν) for any

signed measure ν.

3.2 Transition probability associated with Rǫ

The operation Rǫ implements the transition probability

TR,ǫ(s,A) =
1

Zc2

∫

A

ds′ exp

{

− 1

2c22
(π′ − c1π, π

′ − c1π)

}

δ(U ′, U), (3.6)

where s = (π, U), s′ = (π′, U ′) and

Zc =

∫

dυ e−
1

2c2
(υ,υ). (3.7)

This expression has all the required properties of a transition probability. Moreover,

a straightforward calculation shows that

TR,ǫ1TR,ǫ2 = TR,ǫ1+ǫ2 (3.8)
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i.e. the momentum rotations, when considered to be transformations of probability

measures, form a one-dimensional semigroup with group parameter ǫ.

It follows from these remarks that repeated application of the momentum rotations

at fixed U leads to the equilibrium distribution

lim
n→∞

(Tn
R,ǫ)(s,A) =

1

Z1

∫

A

ds′ e−
1

2
(π′,π′)δ(U ′, U) (3.9)

for any initial state s = (π, U).

3.3 Transition probability associated with Iǫ

The transition probability representing the molecular dynamics evolution is

TI,ǫ(s,A) =

∫

A

ds′ δ(π′ − π̃)δ(U ′, Ũ) =

{

1 if (π̃, Ũ) ∈ A,

0 otherwise,
(3.10)

where (π̃, Ũ) = Iǫ(π, U) as before. If the accept-reject step is included in the tran-

sition, the associated transition probability becomes

TAI,ǫ(s,A) =

∫

A

ds′
{

Pacc(π, U)δ(π′ − π̃)δ(U ′, Ũ)

+ (1− Pacc(π, U))δ(π′ + π)δ(U ′, U)
}

. (3.11)

Noting

Pacc(π, U)e−H(π,U) = Pacc(−π̃, Ũ)e−H(−π̃,Ũ) (3.12)

and that the change of variables from π, U to −π̃, Ũ has unit Jacobian, it is straight-

forward to show that TAI,ǫ preserves the equilibrium distribution (2.2). Since TR,ǫ

preserves the distribution as well, the same is the case for the transition probability

TAI,ǫTR,ǫ representing a complete SMD update cycle.

3.4 SMD Markov chain

Repeated application of the SMD algorithm evolves a given initial probability mea-

sure µ0 according to

µ0 → µ1 → µ2 → . . . , µn+1 = TAI,ǫTR,ǫµn. (3.13)

5



Eventually only the distributions of the gauge field are of interest, i.e. the measures

on X reduced to the sets P ×A, where P denotes the full momentum space and A is

any measurable subset of position space. Clearly, the same gauge-field distributions

are obtained with the modified Markov chain

TR,ǫ/2µn, n = 0, 1, 2, . . . , (3.14)

which is generated by the transition probability

T = TR,ǫ/2TAI,ǫTR,ǫ/2. (3.15)

Use has here been made of the semigroup property (3.8) of the momentum rotations.

In the following, the convergence properties of the Markov chains with the symmetric

transition probabilities (3.15) and

T̂ = TR,ǫ/2TI,ǫTR,ǫ/2 (3.16)

(where the accept-reject step is omitted) will be studied.

4. Convergence analysis: Boundedness

The Markov chains generated by T and T̂ do not obviously converge to a stationary

distribution. If the transition probability satisfies certain conditions, the convergence

of such processes can be rigorously guaranteed. Here an elegant version of Harris’

famous theorem [5] recently proved by Hairer and Mattingly [6] will be invoked to

establish the convergence of the SMD algorithm.

One of the reasons the algorithm might fail to converge is the fact that the phase

space is not compact and that the simulations might therefore run away (for illustra-

tion, a simple case where this happens is discussed in appendix A). In this section,

the boundedness of the process is proved by constructing a so-called Lyapunov func-

tion.

4.1 Strategy

A Lyapunov function for the transition probability T is a measurable function L :

X → [0,∞) that goes to infinity at large momenta and which satisfies

∫

X

T (s, ds′)L(s′) ≤ rL(s) +K (4.1)
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for all s ∈ X and some constants r,K in the range 0 < r < 1, K ≥ 0. In particular,

the integral on the left of eq. (4.1) is required to be finite, which already shows that

the measure T (s, ·) must, in a certain sense, be small at large momenta.

If the simulation starts from some initial configuration s0, the state after n up-

date cycles with transition probability T is distributed according to the probability

measure

µn(A) = (Tn)(s0, A). (4.2)

Repeated application of the bound (4.1) then shows that

∫

X

µn(ds)L(s) ≤ rnL(s0) +K
n−1
∑

k=0

rk. (4.3)

The integral on the left thus remains bounded as n → ∞ and there exists a constant

C, independent of n, such that

µn(‖π‖ ≥ R) ≤ C

inf‖π‖≥R L(s)
, (4.4)

where ‖·‖ is any suitable norm in the space of momentum fields. The probability to

find the system at large momenta π thus goes to zero with a rate determined by the

Lyapunov function. Clearly, since this result holds uniformly in n, the property is

inherited by the limiting distribution if it exists.

4.2 Example of a Lyapunov function

Lyapunov functions for the transition probabilities T and T̂ are not difficult to find.

A particularly simple choice is

L(s) = (π, π) for all s = (π, U). (4.5)

This function is measurable, non-negative and goes to infinity at large momenta. A

short calculation furthermore shows that, for gauge group SU(N),

∫

X

TR,ǫ/2(s, ds
′)L(s′) = c̄21L(s) + c̄22(N

2 − 1)Nl, (4.6)

where Nl denotes the number of (active) links on the lattice and c̄1, c̄2 coincide with

c1, c2 with ǫ replaced by ǫ/2. The function (4.5) is thus a Lyapunov function for the

transition probability representing the momentum rotations.
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In the case of the molecular-dynamics evolution,

∫

X

TI,ǫ(s, ds
′)L(s′) = (π̃, π̃), (4.7)

where (π̃, Ũ) = Iǫ(π, U) and s = (π, U) as before. The integrators considered are all

such that

π̃ = π −
m
∑

k=0

ǫk(∂S)(Uk) (4.8)

for some fixed (usually small) number m of integration steps and step sizes ǫk pro-

portional to ǫ. Since the action was assumed to have uniformly bounded derivatives,

there exists M > 0, independent of ǫ and the lattice volume, such that

(π̃ − π, π̃ − π) ≤ d2 = ǫ2(N2 − 1)NlM (4.9)

for all U . As a consequence, the bound

(π̃, π̃) ≤ (π, π) + 2d(π, π)1/2 + d2 ≤ 1

c̄21
(π, π) +

d2

c̄22
(4.10)

is obtained.

It is now straightforward to show that (4.5) is a Lyapunov function for the product

T = TR,ǫ/2TI,ǫTR,ǫ/2, the constants in eq. (4.1) being

r = c̄21, K =
{

2c̄22 + ǫ2M
c̄21
c̄22

}

(N2 − 1)Nl. (4.11)

It is also a Lyapunov function for the transition probability T̂ , with the same r,K,

as can be easily verified starting from eq. (3.11) and using the bound (4.10) again.

4.3 Synthesis

The discussion in this section shows that SMD simulations do not run away, inde-

pendently of the initial state, the step size ǫ and whether the accept-reject step is

included in the algorithm or not. More precisely, at large simulation times, the prob-

ability to find the system in a state where (π, π) ≥ R2 is asymptotically bounded

by K/(c̄2R)2. Note that the proportionality constant

K

c̄22
=

{

2 +
M

γ2

}

(N2 − 1)Nl +O(ǫ) (4.12)
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remains bounded in the limit ǫ → 0 and that it scales proportionally to the number

of links, just like the expectation value of (π, π) in the canonical distribution (2.2).

5. Convergence analysis: Minorization

In addition to the existence of a Lyapunov function, the version of Harris’ theorem

established in ref. [6] assumes a minorization condition to hold. More precisely, an

integer n ≥ 1, a radius R > 2K/(1− r), a constant α > 0 and a probability measure

ν on X are assumed to exist such that

(Tn)(s, ·) ≥ αν(·) (5.1)

for all states s ∈ X satisfying L(s) ≤ R. The goal in this section is to show that this

condition is fulfilled with measure

ν(A) =
1

Zc

∫

A

ds e−
1

2c2
(π,π), c = c̄2/

√
2, (5.2)

if ǫ is not too large (i.e. such that Assumption 5.4 below holds).

5.1 Properties of the action

In the following, the norm

‖U‖ = sup
x,µ

‖U(x, µ)‖2 (5.3)

is used for fields of matrices like the gauge and momentum fields, where ‖·‖2 denotes

the matrix norm (B.1).

Since the action S is assumed to be a smooth function of the link variables, and

since the field space is compact, its first derivative

(∂S)(x, µ;U) = T a∂a
x,µS(U) (5.4)

satisfies

‖(∂S)(·, U)‖ ≤ M1 (5.5)
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for some constant M1 independent of U . Moreover, for any two fields U and U ′,

‖(∂S)(·, U ′)− (∂S)(·, U)‖ ≤ M2‖U ′ − U‖, (5.6)

where M2 is another finite constant. In the case of the Wilson action, for example,

M1 = 8/g20 and M2 = 24/g20 , where g0 denotes the bare coupling.

5.2 Bounds on the molecular-dynamics evolution

Starting from any point (π, U) in phase space, the integrator Iǫ evolves the momen-

tum und gauge field alternatingly in, say, m steps. In the case of the momentum-first

algorithms, for example, the steps leading to (π̃, Ũ) = Iǫ(π, U) are then

π1 = π, U1 = U, (5.7)

πk+1(x, µ) = πk(x, µ)− ǫk(∂S)(x, µ;Uk), k = 1, . . . ,m, (5.8)

Uk+1(x, µ) = exp{ǫ̃kπk+1(x, µ)}Uk(x, µ), k = 1, . . . ,m− 1, (5.9)

π̃ = πm+1, Ũ = Um, (5.10)

where the step sizes ǫk, ǫ̃k are proportional to ǫ with proportionality constants such

that

m
∑

k=1

ǫk =
m−1
∑

k=1

ǫ̃k = ǫ. (5.11)

The maximum ǭ of the sums
∑m

k=1 |ǫk| and
∑m−1

k=1 |ǫ̃k| may however be slightly larger

than ǫ if some of the step sizes are negative.

Lemma 5.1: The bounds

‖πk − π‖ ≤ ǭM1, (5.12)

‖Uk − U‖ ≤ ǭ‖π‖+ ǭ2M1, (5.13)

hold for any initial data.

Proof: Equations (5.7),(5.8) imply

πk(x, µ) = π(x, µ)−
k−1
∑

j=1

ǫj(∂S)(x, µ;Uj). (5.14)
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Using the triangle inequality and the uniform boundedness (5.5) of the derivative of

the action then immediately leads to the inequality (5.12).

Another application of the triangle inequality furthermore shows that

‖πk‖ ≤ ‖π‖+ ǭM1. (5.15)

Together with the bound

‖Uk+1 − Uk‖ ≤ |ǫ̃k|‖πk+1‖, k = 1, . . . ,m− 1, (5.16)

which is a consequence of the recursion (5.9) and the Lipschitz bound (B.2), this

proves the second inequality (5.13).

Lemma 5.2: Let (πk, Uk) and (π′
k, U

′
k) be the intermediate fields generated by the

recursion (5.7)–(5.10) for a given initial gauge field U and some initial momenta π

and π′, respectively. Then the bounds

‖π′
k − πk‖ ≤ M3‖π′ − π‖, (5.17)

‖U ′
k − Uk‖ ≤ ǭM4‖π′ − π‖, (5.18)

hold uniformly in U , where M3 = 1 + O(ǫ2) and ǭM4 =
∑m−1

k=1 |ǫ̃k|{1 + O(ǫ2)}.
Proof: From eqs. (5.6),(5.8),(5.9) and the Lipschitz bound (B.2) one infers that

‖π′
k+1 − πk+1‖ ≤ ‖π′

k − πk‖+ |ǫk|M2‖U ′
k − Uk‖, (5.19)

‖U ′
k+1 − Uk+1‖ ≤ |ǫ̃k|‖π′

k+1 − πk+1‖+ ‖U ′
k − Uk‖. (5.20)

Together with the initial values

‖π′
1 − π1‖ = ‖π′ − π‖, ‖U ′

1 − U1‖ = 0, (5.21)

these inequalities recursively yield bounds on the deviations of the fields. The bounds

(5.17),(5.18) are now implied by the fact that the ansatz

‖π′
k − πk‖ ≤ {1 + O(ǫ2)}‖π′ − π‖, (5.22)

‖U ′
k − Uk‖ ≤

k−1
∑

j=1

|ǫ̃j |{1 + O(ǫ2)}‖π′ − π‖, (5.23)
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is preserved by the recursion.

Lemma 5.3: Let (πk, Uk), (π
′
k, U

′
k) and the constants M3,M4 be as in lemma 5.2.

The fields Ũ and Ũ ′ obtained at the end of the molecular-dynamics evolution then

satisfy

‖Ũ ′ − Ũ‖ ≥
{

ǫ− 1
2 ǭ

2M3(‖π′‖+ ‖π‖)− ǭ3(M1M3 +M2M4)
}

‖π′ − π‖ (5.24)

for any initial values π, π′, U of the fields.

Proof: The recursion (5.9) implies

Ũ(x, µ) = exp{ǫ̃m−1πm(x, µ)} . . . exp{ǫ̃1π2(x, µ)}U(x, µ) (5.25)

and Ũ ′ is given by the same formula with πk replaced by π′
k. A straightforward

application of the Lipschitz bound (B.8) then leads to

‖υ‖ ≤ ‖Ũ ′ − Ũ‖+ 1
2

m−1
∑

k=1

ǫ̃k(‖π′
k+1‖+ ‖πk+1‖)

m−1
∑

j=1

ǫ̃j‖π′
j+1 − πj+1‖, (5.26)

where

υ(x, µ) =
m−1
∑

k=1

ǫ̃k(π
′
k+1 − πk+1)(x, µ)

= ǫ(π′ − π)(x, µ)−
m−1
∑

k=1

k
∑

j=1

ǫ̃kǫj
{

(∂S)(x, µ;U ′
j)− (∂S)(x, µ;Uj)

}

. (5.27)

Recalling eqs. (5.15) and (5.17), the last term in eq. (5.26) is seen to be bounded by

{

ǭ2M1 +
1
2 ǭ(‖π′‖+ ‖π‖)

}

ǭM3‖π′ − π‖, (5.28)

while

‖υ‖ ≥ (ǫ− ǭ3M2M4)‖π′ − π‖, (5.29)

as can be quickly shown using the triangle inequality, (5.6) and subsequently (5.18).

Taken together these estimates imply (5.24).
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Assumption 5.4: The simulation step size ǫ is such that

ǭ3(2M1M3 +M2M4) < ǫ, (5.30)

where M1, . . . ,M4 are the constants appearing in eqs. (5.5), (5.6), (5.17) and (5.18),

respectively.

The inequality (5.30) sets an upper limit on ǫ, which is, in practice, not far from the

values of ǫ typically chosen in the simulations. If the accept-reject step is omitted,

the step size must anyway be fairly small in order to suppress the systematic errors

deriving from the inexact integration of the molecular-dynamics equations.

In the following, it will be taken for granted that Assumption 5.4 holds. The

constant

λ = ǫ− ǭ3(M1M3 +M2M4) (5.31)

then satisfies λ > ǭ3M1M3 and is thus strictly positive. The symbol

Bδ =
{

π
∣

∣

∣ ‖π‖ <
δ

ǭ2M3

}

(5.32)

will now often be used for the ball with radius δ/(ǭ2M3) at the origin in momentum

space.

Lemma 5.5: Let Ũ be the gauge field obtained by applying the integrator Iǫ to the

initial fields π, U . At fixed U , and if restricted to Bλ, the mapping π → Ũ(π) is then

a diffeomorphism.

Proof: The map π → Ũ(π) is one-to-one on Bλ, since

Ũ(π′) = Ũ(π), π′, π ∈ Bλ, (5.33)

implies, by Lemma 5.3,

0 = ‖Ũ(π′)− Ũ(π)‖ ≥
{

λ− 1
2 ǭ

2M3(‖π′‖+ ‖π‖
}

‖π′ − π‖, (5.34)

which can only be true if π′ = π (the expression in the curly bracket is positive).

Since the map π → Ũ(π) is smooth, its inverse is smooth if the Jacobian matrix

J(x, µ; y, ν)ab = −2 tr
{

T a ∂Ũ(x, µ)

∂πb(y, ν)
Ũ(x, µ)−1

}

(5.35)
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is non-singular at all π ∈ Bλ. In other words, what needs to be shown is that

(Jω)(x, µ)a =
∑

y,ν,b

J(x, µ; y, ν)abω(y, ν)b (5.36)

does not vanish, unless the momentum field ω is equal to zero. Noting

Jω = lim
s→0

1

s

{

Ũ(π + sω)− Ũ(π)
}

Ũ(π)−1 (5.37)

and using Lemma 5.3 again, the bound

‖Jω‖ ≥
{

λ− ǭ2M3‖π‖
}

‖ω‖ (5.38)

is obtained. The Jacobian matrix thus has no zero modes if π ∈ Bλ, which proves

that the mapping π → Ũ(π) restricted to Bλ is a diffeomorphism.

Lemma 5.6: Let Ũ be as in Lemma 5.5 and ω ∈ Bδ for some δ in the range (0, λ).

Then all gauge fields U ′ satisfying

‖U ′ − Ũ(ω)‖ <
(λ− δ)2

2ǭ2M3
(5.39)

are contained in the image Iλ(U) of Bλ under the mapping π → Ũ(π).

Proof: The image Iλ(U) is an open set that contains Ũ(ω). The set

Nκ =
{

U ′
∣

∣ ‖U ′ − Ũ(ω)‖ < κ
}

(5.40)

is therefore contained in Iλ(U) if κ > 0 is sufficiently small. Let

κ̂ =
(λ− δ)2

2ǭ2M3
, (5.41)

κ̄ = sup
{

κ ≤ κ̂
∣

∣ Nκ ⊂ Iλ(U)
}

. (5.42)

Clearly, 0 < κ̄ ≤ κ̂ and what needs to be proved is that κ̄ = κ̂.

Any field U ′ ∈ Nκ̄ is equal to Ũ(π) for some π ∈ Bλ. Lemma 5.3 then implies

κ̄ ≥ 1
2 (λ− δ)‖π − ω‖ (5.43)
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and thus, using the triangle inequality,

‖π‖ ≤ 2κ̄

λ− δ
+

δ

ǭ2M3
. (5.44)

The expression on the right of this inequality is less than λ/(ǭ2M3) if κ̄ < κ̂.

It follows from this remark that κ̄ cannot be smaller than κ̂, since Nκ̄ would then

be contained in Iρ(U) for some ρ < λ. Since π → Ũ(π) is a diffeomorphism on Bλ,

this would imply that the closure of Nκ̄ and consequently Nκ for some κ > κ̄ would

be contained in Iλ(U), thus contradicting the definition of κ̄.

5.3 Lower bound on the transition probability

The transition probability T is explicitly given by

T (s,A) =
1

Z2
c̄2

∫

A

ds′
∫

dυ δ(U ′, Ũ)

× exp
{

− 1

2c̄22

[

(π′ − c̄1υ̃, π
′ − c̄1υ̃) + (υ − c̄1π, υ − c̄1π)

]

}

, (5.45)

where s = (π, U), s′ = (π′, U ′) and (υ̃, Ũ) = Iǫ(υ, U). Since the integrand in this

formula is non-negative, the restriction of the integration over the momentum υ to

Bλ provides a lower bound on the integral. In view of Lemma 5.5, one can then

change variables from υ to Ũ , the new domain of integration being Iλ(U).

With the change of variables, the integration measure transforms according to

dυ ∝ dŨ |det J |−1
, (5.46)

where J is the Jacobian matrix (5.35) (with π replaced by υ). The proportionality

constant in eq. (5.46) depends on the number of link variables and the gauge group,

but not on the fields. Following the lines after (5.36), the bound (5.18) implies

‖Jω‖ ≤ ǭM4‖ω‖ (5.47)

and thus a uniform lower bound on the Jacobian factor in eq. (5.46). As a result,

one obtains

T (s,A) ≥ constant×
∫

A

ds′ θ(U ′ ∈ Iλ(U))

× exp
{

− 1

2c̄22

[

(π′ − c̄1υ̃, π
′ − c̄1υ̃) + (υ − c̄1π, υ − c̄1π)

]

}

, (5.48)
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where υ ∈ Bλ is such that Ũ(υ) = U ′ (the function θ(·) is equal to 1 if its argument

is true and 0 otherwise). Since υ and υ̃ are bounded by a constant that does not

depend on U or U ′, the exponent in eq. (5.48) may be simplified,

T (s,A) ≥ constant×
∫

A

ds′ θ(U ′ ∈ Iλ(U)) exp
{

− 1

c̄22
(π′, π′)− c̄21

c̄22
(π, π)

}

, (5.49)

at the expense of a modification of the constant in front of the integral.

By substituting the inequality (5.49) in

(Tn)(s,A) =

∫

X

T (s, ds1)T (s1, ds2) . . . T (sn−1, A) (5.50)

and integrating over the intermediate momenta, the bound

(Tn)(s,A) ≥ Cn

∫

A

ds′
∫

dV1 . . . dVn−1

× θ(U ′ ∈ Iλ(Vn−1))θ(Vn−1 ∈ Iλ(Vn−2)) . . . θ(V1 ∈ Iλ(U))

× exp
{

− 1

c̄22
(π′, π′)− c̄21

c̄22
(π, π)

}

(5.51)

is obtained for the powers of the transition probability, where the constants Cn > 0

depend on n but not on s or A.

5.4 Proof of the minorization bound (5.1)

In view of the reversibility of the integrator Iǫ, one expects that there is a non-zero

probability for the SMD process to return to any initial state after two update steps.

The following Lemma confirms this (any unexplained notation is as in the previous

subsections).

Lemma 5.7: There exist positive constants ρ and h such that

∫

X

dV θ(U ′ ∈ Iλ(V ))θ(V ∈ Iλ(U)) ≥ h θ(‖U ′ − U‖ < ρ) (5.52)

for all U,U ′.

Proof: Assumption 5.4 guarantees that there exists a real number σ in the range

ǭ3M1M3 < σ < λ. (5.53)
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κ

0 ||π||

Fig. 1. Plot of the expression on the right of the inequality (5.56) as a function of

‖π‖. The constant κ is always below the maximum of the expression, which is reached

at ‖π‖ = λ/(ǭ2M3) (dotted line).

Lemma 5.6 then implies that all gauge fields V satisfying

‖V − Ũ(0)‖ < κ, κ =
λ2 − σ2

2ǭ2M3
, (5.54)

are contained in Iλ(U). The integral

∫

X

dV θ(U ′ ∈ Iλ(V ))θ(‖V − Ũ(0)‖ < κ). (5.55)

thus provides a lower bound on the integral (5.52).

For any field V in the range (5.54) there exists a unique momentum field π ∈ Bλ

such that V = Ũ(π). Actually, by Lemma 5.3, the bound

κ ≥
{

λ− 1
2 ǭ

2M3‖π‖
}

‖π‖ (5.56)

holds and consequently

‖π‖ ≤ λ− σ

ǭ2M3
(5.57)

(see fig. 1).
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Now if (π̃, Ũ) = Iǫ(π, U), as before, the combination of Lemma 5.1 and the bound

(5.57) implies π̃ ∈ Bδ, where δ is any constant in the range

λ− σ + ǭ3M1M3 < δ < λ (5.58)

The choice (5.53) of σ guarantees that the range (5.58) is not empty and that δ is

positive. Setting

ρ =
(λ− δ)2

2ǭ2M3
(5.59)

and invoking Lemma 5.6 again, it then follows that any U ′ satisfying

‖U ′ − Ṽ (−π̃)‖ < ρ (5.60)

is contained in Iλ(V ). Moreover, the reversibility of the integrator Iǫ implies

Ṽ (−π̃) = U, (5.61)

i.e. the range (5.60) of U ′ is the same for all V .

The integral (5.56) is thus seen to be bounded from below by

∫

X

dV θ(‖U ′ − U‖ < ρ)θ(‖V − Ũ(0)‖ < κ). (5.62)

After passing to the integration variables W = V Ũ(0)−1, the integral (5.62) decom-

poses into a product of link integrals over the range ‖W (x, µ)‖2 < κ and is therefore

equal to some constant h > 0.

The minorization bound (5.1) may now be established by recalling (5.51) and choos-

ing n = 2m to be even. Lemma 5.7 allows the integrations over V1, V3, . . . , V2m−1 to

be performed, the new lower bound being

(Tn)(s,A) ≥ hmCn

∫

A

ds′
∫

dV2dV4 . . . dV2m−2

× θ(‖U ′ − V2m−2‖ < ρ) . . . θ(‖V2 − U‖ < ρ)

× exp
{

− 1

c̄22
(π′, π′)− c̄21

c̄22
(π, π)

}

. (5.63)
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According to Lemma B.2, one can choose m ≥ 1 so that, for any U and U ′, there

exists a sequence V̂0, V̂2, . . . , V̂2m of gauge fields satisfying

V̂0 = U, V̂2m = U ′, (5.64)

‖V̂2k − V̂2k−2‖ < δ for all k = 1, . . . , n, (5.65)

where δ = ρ/3. Now let W2, . . . ,W2m−2 be independent gauge fields satisfying

‖W2k − 1‖ < δ (5.66)

and set

Vk = WkV̂k, k = 2, 4, . . . , 2m− 2. (5.67)

Another application of the triangle inequality and the Lipschitz bound (B.2) shows

that

‖V2 − U‖ < ρ, ‖U ′ − V2m−2‖ < ρ, (5.68)

‖Vk − Vk−2‖ < ρ for all k = 2, 4, . . . , 2m− 2. (5.69)

and thus leads to the bound

(Tn)(s,A) ≥ hmCn

∫

A

ds′
m−1
∏

k=1

∫

X

dW2kθ(‖W2k − 1‖ < δ)

× exp
{

− 1

c̄22
(π′, π′)− c̄21

c̄22
(π, π)

}

. (5.70)

The integrals over W2, . . . ,W2m−2 do not depend on U or U ′ and therefore merely

contribute to the constant on the right of the inequality. Finally, since (π, π) =

L(s) ≤ R, the minorization bound (5.1) follows.

5.5 Remarks

According to Harris’ theorem (Theorem 1.2 in ref. [6]), the convergence of the sto-

chastic process with transition probability Tn to a unique stationary distribution is

guaranteed by the existence of the Lyapunov function (4.5) and the minorization
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bound (5.1). The theorem also yields an upper bound on the exponential autocor-

relation time, but as is often the case with rigorous estimates, the bound is likely to

be a poor estimate of the true autocorrelation time.

It is straightforward to show that the process with transition probability T con-

verges to the same stationary distribution as the one with transition probability Tn.

Moreover, the minorization bound (5.1) also holds for the transition probability T̂n

that includes the acceptance-rejection step.

6. SMD algorithm in QCD

The results obtained in the previous sections extend to QCD with any number and

type of quarks. In particular, convergence to a unique stationary distribution is again

guaranteed if Assumption 5.4 holds, with the constants M1, . . . ,M4 determined by

the gauge action and the integration scheme for the molecular-dynamics equations.

In order to show this, it suffices to consider the theory with two flavours of mass-

degenerate quarks and the simplest possible choice for the pseudo-fermion action as

representative case.

6.1 Simulation algorithm

As usual the quarks may be included in the theory by introducing a pseudo-fermion

field φ with action

Spf(U, φ) = (D−1φ,D−1φ), (6.1)

whereD denotes the (massive) lattice Dirac operator. The Dirac operator, its inverse

D−1 and the derivatives of D−1 with respect to the gauge field are assumed to be

bounded in the norm by constants that do not depend on the latter. This condition

is not satisfied in the case of the Wilson–Dirac operator, but can be met by including

a small twisted mass term in the quark action as infrared regulator [7].

The SMD algorithm now essentially proceeds as described in sect. 2, with action

S(U, φ) = SG(U) + Spf(U, φ) (6.2)

in place of the pure gauge action SG. A new element of the algorithm is the rotation

Rφ,ǫ : φ → c1φ+ c2Dη (6.3)
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of the pseudo-fermion field, which is applied together with the momentum rotation.

In eq. (6.3), η is a Gaussian random pseudo-fermion field with mean zero and unit

variance. For simplicity, the friction parameter γ and thus the coefficients c1 and c2
are here taken to be the same as in the momentum rotation (2.3), but the algorithm

remains correct, and its performance may improve, if a different value is chosen.

In the molecular-dynamics step, the momentum and the gauge fields are updated

as described in subsect. 2.2, while the pseudo-fermion field is held fixed. For the inte-

grator one can choose a nested one, where the different driving forces are integrated

with different speeds (see ref. [7], for example).

6.2 Lyapunov function

Since the space of pseudo-fermion fields is non-compact, a useful Lyapunov function

must depend on the pseudo-fermion field. In the following lines, the functions

L1(s) = (π, π), (6.4)

L2(s) = (φ, φ)2, (6.5)

L3(s) = (φ, φ), (6.6)

are considered and a Lyapunov function is constructed in the form of a linear com-

bination of these with positive coefficients.

Proceeding as in subsect. 4.2, it is straightforward to derive the bounds

∫

X

T (s, ds′)Li(s
′) ≤

3
∑

j=1

AijLj(s) +Ki, Ki ≥ 0, (6.7)

where the matrix A is of the triangular form

A =







c1 A12 A13

0 c41 A23

0 0 c21






. (6.8)

with positive coefficients A12, A13, A23. A has a left eigenvector v = (v1, v2, v3) with

components

v1 = 1, v2 =
A12

c1 − c41
, v3 =

A13 + v2A23

c1 − c21
, (6.9)
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and eigenvalue c1. The function

L(s) =
3

∑

i=1

viLi(s) (6.10)

is hence a Lyapunov function, i.e. satisfies eq. (4.1) with r = c1 and K =
∑3

i=1 viKi.

Since the coefficients vi are all positive, the inequality L(s) ≤ R implies uniform

upper bounds on π and φ. The SMD algorithm thus cannot run away to arbitrarily

large momentum or pseudo-fermion fields.

6.3 Minorization bound

The minorization bound (5.1) remains valid in full QCD with

ν(A) ∝
∫

A

ds exp
{

− 1

2c2
(π, π)− d2

c2
(φ, φ)

}

, (6.11)

where c is as before and

d = sup
U

‖D−1‖2. (6.12)

As before, the proof of the bound requires Assumption 5.4, with M1, . . . ,M4 deter-

mined in the pure gauge theory, to hold. The convergence of the SMD algorithm to

a unique stationary state then follows from Harris’ theorem.

First note that the transition probability corresponding to the rotation (6.3) is

given by

TRφ,ǫ(s,A) =
1

Zφ,c2(U)

∫

A

ds′ δ(π′ − π)δ(U ′, U)

× exp

{

− 1

c22

(

D−1(φ′ − c1φ), D
−1(φ′ − c1φ)

)

}

, (6.13)

where s = (π, U, φ), s′ = (π′, U ′, φ′) and

Zφ,c(U) =

∫

dφ e−
1

c2
(D−1φ,D−1φ) (6.14)
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is the pseudo-fermion partition function. In QCD the integrand in eq. (5.45) thus

gets modified by the factor

1

Zφ,c̄2(U
′)Zφ,c̄2(U)

exp
{

− 1

c̄22

[

(D−1(φ′ − c̄1χ), D
−1(φ′ − c̄1χ))

+ (D−1(χ− c̄1φ), D
−1(χ− c̄1φ))

]

}

(6.15)

and the intermediate pseudo-fermion field χ is to be integrated over.

By replacing the pseudo-fermion partition functions by a suitable constant and

by restricting the integral over χ to the ball

‖χ‖2 < ρ̄ (6.16)

for some constant ρ̄ > 0, a lower bound on the transition probability is obtained.

Moreover, the exponential factor in eq. (6.15) is then bounded from below by

exp
{

−d2

c2
[

(φ′, φ′) + c̄21(φ, φ)
]

}

(6.17)

times a constant. One is free to set ρ̄ to a very small value, in which case the fermion

forces practically have no effect on the molecular-dynamics evolution that leads from

U to Ũ in eq. (5.45). In particular, the Lemmas proved in sect. 5 continue to hold

with constants M1, . . . ,M4 slightly modified by terms of order ρ̄2. From here on the

proof of the minorization bound proceeds as in the pure gauge theory (subsect. 5.4).

Appendix A

SMD simulations of the standard φ4 lattice theory, using integrators of the kind

described in subsect. 2.2, are unstable if the acceptance-rejection step is omitted.

The full algorithm is probably stable, but it can stagnate over very long periods of

simulation time.
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A.1 One-dimensional model

In order to show this, it suffices to consider a single coordinate q with momentum p

and Hamilton function

H(p, q) = 1
2p

2 + S(q), (A.1)

S(q) = 1
2q

2 + 1
4q

4. (A.2)

With the leapfrog integrator, the SMD algorithm amounts to applying the update

cycle

p → c1p+ c2υ − 1
2ǫS

′(q), (A.3)

q → q + ǫp, (A.4)

p → p− 1
2ǫS

′(q), (A.5)

where υ is a Gaussian random variable with mean zero and unit variance.

A.2 Long-time instability

In the first step (A.3) of the update cycle, the momentum p is not protected from

becoming very large. The probability for this to happen depends on the integration

step size and is exponentially suppressed at small ǫ. However, exceptionally large

momenta do occur in sufficiently long runs.

An exceptionally large momentum shifts the coordinate q in the second step (A.4)

to some large value and the momentum is then amplified in the last step (A.5) by

a term proportional to the third power of q. Clearly, p and q are rapidly driven to

infinity in this way.

Large momenta are made less probable by the acceptance-rejection step but are

not rigorously excluded to occur. Once a large momentum (and consequently large

coordinate) is accepted, the algorithm stagnates for a very long time, because the

energy deficit ∆H will always be unacceptably large.

A.3 Remarks

In theories with non-compact state space and/or actions with unbounded first deriva-

tives, the SMD algorithm may not be a viable choice of algorithm for the reasons

given in this appendix.
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Although the simulation will be less likely to run away or to stagnate, the problem

cannot be cured by decreasing the integration step size or by replacing the leapfrog

integrator by a higher-order integrator. The Langevin algorithm incidentally runs

away too if the well-known explicit integrators are used. Implicit integrators such

as the symplectic mid-point rule however behave differently and may yield stable

algorithms.

Appendix B

B.1 Matrix norm

Starting from the standard L2 norm ‖v‖2 of vectors v with n complex components,

the norm of any complex n× n matrix A is defined by

‖A‖2 = sup
‖v‖

2
=1

‖Av‖2. (B.1)

This norm has the usual properties of a decent matrix norm. Moreover, ‖U‖2 = 1

and ‖AU‖2 = ‖UA‖2 = ‖A‖2 if U is unitary.

B.2 Properties of the exponential map

All result derived in this subsection apply to the gauge group SU(N), N ≥ 2, and

its Lie algebra su(N).

Lemma B.1: The Lipschitz bounds

∥

∥eX − eY
∥

∥

2
≤ ‖X − Y ‖2, (B.2)

∥

∥eX − eY
∥

∥

2
≥

{

1− 1
2 (‖X‖2 + ‖Y ‖2)

}

‖X − Y ‖2, (B.3)

hold for any X,Y ∈ su(N).

Proof: First note that

∥

∥eX − eY
∥

∥

2
=

∥

∥eXe−Y − 1
∥

∥

2
(B.4)

since eY is unitary. The identity

eXe−Y − 1 =

∫ 1

0

ds esX(X − Y )e−sY (B.5)
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and the subadditivity of the matrix norm then lead to the bound (B.2). Similarly,

(B.3) is obtained using

X − Y = eXe−Y − 1

−
∫ 1

0

ds
{

(esX − 1)(X − Y )e−sY + (X − Y )(e−sY − 1)
}

, (B.6)

the triangle inequality and the bound (B.2).

A straightforward generalization of the arguments used in the proof of Lemma B.1

lead to the bounds

∥

∥eX1 . . . eXn − eY1 . . . eYn
∥

∥

2
≤

n
∑

k=1

‖Xk − Yk‖2 (B.7)

and

∥

∥eX1 . . . eXn − eY1 . . . eYn
∥

∥

2
≥ ‖Z‖2 − 1

2

n
∑

k=1

(‖Xk‖2 + ‖Yk‖2)
n
∑

j=1

‖Xj − Yj‖2,

(B.8)

Z =

n
∑

k=1

(Xk − Yk), (B.9)

which hold for arbitrary sequences X1, . . . , Xn and Y1, . . . , Yn of elements of su(N).

Lemma B.2: Let δ > 0 and U ∈ SU(N). Then there exists an integer n ≥ 1 and a

sequence U0, U1, . . . , Un of group elements such that

U0 = 1, Un = U, (B.10)

‖Uk − Uk−1‖2 < δ for all k = 1, . . . , n. (B.11)

Moreover, n can be chosen to be the same for all U .

Proof: U can be diagonalized with eigenvalues

λk = eiθk , |θk| ≤ π,
N
∑

k=1

θk = 2πm, (B.12)
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where m is an integer, which may, without loss of generality, be assumed to be non-

negative. At least m of the angles θk must then be positive and after subtracting 2π

from m of them, the sum of the angles will vanish and the magnitude of all angles

is less than 2π.

There thus exists X ∈ su(N) such that

U = eX , ‖X‖2 < 2π. (B.13)

Setting

n =
⌈

2π/δ
⌉

, (B.14)

Uk = e
k
n
X , k = 0, 1, . . . , n, (B.15)

the bounds (B.2) and (B.13) show that all statements made in the lemma hold with

this choice of n and sequence U0, . . . , Un of group elements.
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