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1. Introduction

In euclidean space chiral symmetry can be preserved on the lattice by choosing a
lattice Dirac operator D that satisfies the Ginsparg-Wilson relation [1-5]

v5D 4+ D75 = aDvysD. (1.1)

The known solutions of this equation are relatively complicated expressions that
involve arbitrary powers of the lattice derivatives. Unitarity is thus expected to be
violated at energy scales on the order of the momentum cutoff, as is generally the
case in theories with higher-derivative actions.

In the present note we consider free fermions with D given by [3]

aD=1—-A(ATA)~"Y2  A=1-aD,, (1.2)
Dy = 5 {7(0 + 0u) — a0y} (1.3)

(see appendix A for unexplained notations). We then show that the fermion propa-
gator admits a Kéallén—Lehmann spectral representation

00 w/a RE
- — p —E(zo—yo)+ip(x—y)
= dE E 0=%0 1.4
W) 5, [am [ e e (1.4
such that
dEd®p (Tyo0(E, p)¢ (1.5)

is a non-negative measure for all complex Dirac spinors (. Contrary to expectations,
this theory is thus unitary and it could be reformulated in terms of operators that
act in a Hilbert space of physical states.



2. Preliminaries

For notational simplicity the lattice spacing a is set to unity in the following. The
fermion propagator is then given by
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where the square root is to be taken with positive sign. For small momenta we have
F(p) = 50° + O(p"), (2.3)

and it is not difficult to show that F'(p) does not vanish anywhere else in the Brillouin
zone.

To derive the spectral representation (1.4), we shall fix the spatial components of
the momentum and shall evaluate the integral over py by deforming the integration
contour to the complex domain

R:{pg}—WSRepogﬂ, ImpOZO}. (2.4)

The contributions from the pole and cut singularities of the integrand then yield the
spectral density. Formal manipulations at p = 0 can be avoided by excluding the
ball |p| < € from the integral and taking the limit € — 0 at the end of the calculation.
This gives the correct result since the integral (2.1) is absolutely convergent.

We now first need to study the analytic continuation of the integrand to the
complex region R at fixed spatial momentum in the range |px| < 7, |p| > 0.



3. Analyticity properties of F(p)

It is easy to check that

P-32) =1+1Y p2pl (3.1)
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The argument of the square root in eq. (2.2) is thus a linear function of p3 and we
now first need to understand the dependence of this variable on py in the complex
domain R. If we set

Po =71 + 18, A= u+iv, (3.2)
we have
u=2(1—cosrcoshs), v = 2sinrsinhs. (3.3)

For fixed s > 0 and —7 < r < 7 these equations imply that p3 moves once around
the ellipse given by

2 Y (TR R (3.4)
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(see fig. 1). The region R is thus mapped to the whole plane and the mapping is
one-to-one in the range s > 0 if the lines r = +7 are identified with each other.
It follows from these remarks that F'(p) extends to an analytic function in R with

a cut along the imaginary axis from Ej to infinity, where Fy, is given by

1
CoshEp:1+A2{1+iZ]5iﬁl2}, E, > 0. (3.5)
p k£l
The function evaluates to

F(p) = +i {p? (cosh E — cosh Ep)}1/2 —cosh E + 1p? (3.6)

along the cut pgp = iF + ¢, E > E,. Another property of the cut, which will turn
out to be important later, is that

sinh £ > |p| forall E > Ep. (3.7)
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Fig. 1. The transformation po — pg maps the lines at fixed Impy = s to concentric
ellipses with monotonically growing half-axes. In the limit s — 0 the ellipses collapse
to the interval 0 < p2 < 4. The points where the ellipses cross the negative real axis
correspond to the imaginary axis r = 0,s > 0.

One can easily prove this by noting that the argument of the square root in eq. (2.2)
is real and negative along the cut (excluding the branch point £ = Ej,). Since p? is
real for these values of p, the inequality

o AN 2
P <p’+(1-3p°) <0, (3.8)

is obtained which implies (3.7).

4. Zeros of F(p) in the region R

We first note that F'(p) does not vanish along the cut pg = iE, E > E, [cf. eq. 3.6)].
Elsewhere the function is analytic and single-valued. It vanishes if and only if

e -3 = - 39). (w1
This equation implies p? = 0 which is equivalent to

po = i[p|. (4.2)
In particular, the real part of py has to be equal to 0 or +7. The latter possibility is

excluded since p2 = 2 (1 + cosh s) in this case. The two sides of eq. (4.1) then have
opposite sign and cannot match.



Our discussion so far shows that the zeros of F(p) in the region R have to be on
the imaginary axis below the cut. The square root is non-negative there and the
same thus has to be true for the right-hand side of eq. (4.1). In other words, the
function vanishes at py = is if and only if

sinhs = |p|, coshs > 1p°. (4.3)
Note that the equality implies s < E, as we have previously remarked (cf. discussion

at the end of sect. 3).
We now define the set

B<={p‘—wépkgw,1+f>22§(ﬁ2)2}, (4.4)
which will be referred to as the inner region of the Brillouin zone. It can be shown
that there is a non-zero distance between B. and the boundaries p; = +7 of the
integration range. In particular, p does not vanish in B. except at p = 0.

From eq. (4.3) it is now obvious that F'(p) has a zero at

Po = iwp, sinhwp, = |p|, (4.5)

if p is in the inner region of the Brillouin zone and no zero otherwise. The residue

<8F(p) ) _ sinh wy, cosh wp (4.6)
o ) py=iw coshwp — P2’

does not vanish (if we exclude p = 0) and diverges at the boundary of B..

5. Computation of the spectral density o(FE, p)

For 2y > yo the integrand in eq. (2.1) decreases exponentially at large s since
F(p)=—%e"7" + 0(e*/?). (5.1)

The integration over the range —m < pg < 7 can thus be extended to a contour
integral along the boundary of the region R (see fig. 2). Since the integrand is
periodic in 7, the integrals along the imaginary axes at r = +m cancel.
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Fig. 2. The integration contour in the complex po plane runs initially along the
boundary of the region R. It may then be deformed until it runs around the left- and

right rims of the imaginary axis, avoiding the pole (small open circle) and the cut
singularity (shaded vertical bar) of the integrand.

We can now deform the integration contour towards the imaginary axis at r = 0.
As a result the propagator assumes the form (1.4) with

o(E,p) = (vosinh E — iypy)

. cosh E — 1p?
X{5(E — wp)G(COShE — %pg)siTzE2
b2 (cosh E — cosh E,) }'/*
m p2 (coshE — cosh Ep)+(coshE — §p2)

where Ep, and wp, are given by egs. (3.5) and (4.5). Note that the expression in the
curly bracket is a completely well-behaved and non-negative density. In particular,
the 6 function in the pole term excludes the momenta p that are not in the inner
region of the Brillouin zone.

We finally need to show that the measure (1.5) is non-negative. To this end we
first remark that sinh E > |p| at all points (E,p) in the support of the spectral
density. For the continuous part of the spectrum this follows from the discussion at
the end of sect. 3, and in the case of the pole term, the inequality is an immediate
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Fig. 3. Support of the spectral density (5.2) at po = p3 = 0. The physical pole

(curves starting from the origin) disappears in the continuum (shaded areas) precisely
at the boundary of the inner region of the Brillouin zone.

consequence of the definition (4.5) of wp. Now since

("0 (0 sinh E — iyepr) ¢ > 0 (5.3)

for all complex Dirac spinors ¢ if sinh E > |p|, and since this is guaranteed in the
support of the spectral density, it follows that the measure (1.5) is non-negative.

6. Remarks

It seems likely that the unitarity of the theory considered in this note derives from
the existence of a transfer matrix in the 441 dimensional (domain-wall) formulation
of the theory. Evidently the transfer matrix has to go in the physical time direction
in this case, not in the fifth dimension. The inclusion of the gauge field should not
interfere with this, i.e. one may have both exact chiral symmetry and unitarity in
lattice QCD (needs to be checked).

In the case of chiral lattice gauge theories the situation is more complicated and it
is not clear at present whether unitarity is preserved in the current set-up. One may,
however, be able to construct these theories directly in a hamiltonian framework,
starting with a hamiltonian formulation of domain-wall fermions. The continuous
spectrum that we have found above can presumably be traced back to the heavy
modes of such a hamiltonian system (the spectrum is continuous, because the extent
of space-time in the extra dimension is taken to infinity).



Appendix A

A.1 Indices and Dirac matrices

Lorentz indices pu,v, ... are taken from the middle of the Greek alphabet and run
from 0 to 3. Spatial vectors are printed in bold face and have components labelled by
Latin indices k, [, . .. ranging from 1 to 3. For the Dirac indices Greek letters from the
beginning of the alphabet are used. Unless stated otherwise the Einstein summation
convention is applied and scalar products are taken with euclidean metric.

The symbol €,,,, denotes the totally antisymmetric tensor with €123 = 1 and
the conventions for the Dirac matrices are

W' =7 B} =20, 5= r0n727: (A1)
In particular, v5 is hermitian and (y5)? = 1.

A.2 Lattice derivatives

The forward and backward difference operators d,, and 8:5 act on lattice functions
according to

0uf() = ~{f(x + o) — (@)}, (4.2)
O (x) = {f(x) — Flx —ap)}, (43)

where /i denotes the unit vector in direction pu. The eigenfunctions of these operators
are the plane waves, and with the standard abbreviations

pp = (1/a)sin(ap,), Pp = (2/a)sin(ap,/2), (A4)
the derivatives that occur in the Wilson-Dirac operator are given by
%((97: + 8M)eipr = iﬁﬂei’”’, af;aﬂ e'PT = _p2eiPT, (A.5)

Using this result it is straightforward to obtain the momentum space representation
(2.1) of the propagator.
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