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Topological fields

Pure gauge theory on Rn, gauge group G

A gauge-invariant local field q(x) is called topological if∫
dnx δq(x) = 0

for all variations δAa
µ(x) with compact support

A trivial case is

q = ∂µkµ, kµ : local, gauge-invariant
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The Chern monomials

q = cµ1...µ2mt
a1...amF a1

µ1µ2
. . . F am

µ2m−1µ2m

cµ1...µ2m : totally anti-symmetric

ta1...am : G-invariant, totally symmetric

are examples of non-trivial topological fields

Cohomology problem:

“Find a complete basis of topological fields q modulo ∂µkµ terms”
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In the continuum theory we have

Theorem

Any topological field q that is a polynomial in the gauge potential

and its derivatives is of the form

q = c+ ∂µkµ

where c is a Chern polynomial and kµ a gauge-invariant local current

Brandt, Dragon & Kreuzer ’89

Dubois-Violette et al. ’91

• Can be shown using the descent equations

• or, more directly, the Poincaré lemma

3



Reduction to the abelian case

Define q̊ through

Aa
µ → tAa

µ ⇒ q = tνq̊ + O(tν+1)

? q̊ is a homogeneous polynomial of degree ν

? that is invariant under

Aµ → gAµg
−1 and Aµ → Aµ + ∂µω

(= linearized gauge transformations)

? and which is topological, i.e.
∫

dnx δq̊ = 0

It suffices to show that any such field is of the form c̊ + ∂µ̊kµ
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The abelian case may be solved using the fact that

df = 0 ⇒ f = dg + cdx1 . . .dxn

↑
constant

for differential forms on Rn, which is the classical Poincaré lemma
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Lattice gauge theory (mini-intro)

a

Replace space-time by a 4–dimensional

hypercubic lattice

Fermion field

ψ(x), x = a (n0, n1, n3, n4) , nµ ∈ Z

ψ(x) =
∫ π/a

−π/a

d4p

(2π)4
eipxψ̃(p)

⇒ momentum cutoff |pµ| ≤ π/a
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Difference operators

∂µψ(x) = {ψ(x+ aµ̂)− ψ(x)} /a

∂µ
∗ψ(x) = {ψ(x)− ψ(x− aµ̂)} /a

↑
unit vector in direction µ

Wilson–Dirac operator

Dw = 1
2 {γµ(∂µ

∗+ ∂µ)− a∂µ
∗∂µ}

= iγµp̊µ + 1
2ap̂

2 (in momentum space)

p̊µ ≡ (1/a) sin(apµ), p̂µ ≡ (2/a) sin(apµ/2)
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Gauge-covariant difference operator

∇µψ(x) = {R[U(x, µ)]ψ(x+ aµ̂)− ψ(x)} /a

U(x, µ) ∈ G (the lattice gauge field)

U(x, µ) → Λ(x)U(x, µ)Λ(x+ aµ̂)−1

In the classical continuum limit

U(x, µ) = 1 + aAµ(x) + O(a2)

⇒ ∇µ = Dµ + O(a)

µ̂x x+a
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Discretization of the Yang–Mills action

U� = 1 + a2Fµν(x) + O(a3)

x

x

xµ

ν

S =
1
g2

∑
�

tr{(U� − 1)†(U� − 1)} =
2
g2

∑
�

Re tr{1− U�}

Euclidean correlation functions (Wilson loops etc.)

〈O〉 =
1
Z

∫
fields

D[U ]O[U ] e−S[U ], D[U ] ≡
∏
x,µ

dU(x, µ)

↑
Wilson ’74 G-invariant measure
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Local fields φ(x) on the lattice are

? smooth functions of the field variables at y = x+ O(a)

? that transform like a scalar field under translations

such as

Re tr{1− U�}, ψσµν∇µ∇νψ, ψT aγµψ, . . .

[exponential localization with a range of O(a) may be allowed]
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Topology in lattice gauge theory

a2||F||

e−S

ε

The absence of continuity in space implies

• lattice gauge fields are homotopic to U = 1

• there are no non-trivial topological fields

Topology is recovered if

a2‖Fµν‖ ≡ ‖1− U�‖ ≤ ε

for some fixed sufficiently small ε

Can be imposed using a modified action

M.L. ’98, Fukaya & Onogi ’03
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A gauge-invariant local field q is topological if∑
x

δq(x) = 0

for all variations δU(x, µ) of the gauge field with bounded support

Note: it suffices to define q for all fields U satisfying ‖1− U�‖ ≤ ε

Cohomology problem

Find all topological fields up to derivative terms ∂µ
∗kµ

(where kµ is any gauge-invariant local current)
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U(1) theory

Field tensor

U� = eia2Fµν, |a2Fµν| < π

x

x

xµ

ν

This is a gauge-invariant smooth local field since U� = −1 is

excluded by the constraint |1− U�| ≤ ε

The general Chern polynomial

c(x) = α+ βµνFµν(x) + γµνρσFµν(x)Fρσ(x+ aµ̂+ aν̂) + . . .

is an example of a topological field
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Assume now that ε < 1
3π. Then we have

Theorem

Any topological field q is of the form

q = c+ ∂µ
∗kµ

where c is a Chern polynomial and kµ a gauge-invariant local current

M.L. ’98, Fujiwara, Suzuki, Wu ’99, Suzuki ’00

Proof follows the one in the continuum theory, with some

complications (field space, Leibniz rule)
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Sketch of the proof

2d lattice, setting a = 1 and U(x, µ) = eiAµ(x) for simplicity

q(x) = α+
∑

y

∫ 1

0

dt
(
∂q(x)
∂Aµ(y)

)
A→tA

Aµ(y)︸ ︷︷ ︸
jµ(x, y)

The following properties hold

? jµ(x, y) is local & gauge-invariant

?
∑

x jµ(x, y) = 0 [since q is topological]

? jµ(x, y) ∂
←∗

µ = 0 [since q is gauge-invariant]
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x

y

z

The last equation implies

jµ(x, y) = φ(x, y) ∂
←∗

ν εµν

where

• φ(x, y) is local & gauge invariant

• q(x) = α+ 1
2

∑
y φ(x, y)εµνFµν(y)

•
∑

x φ(x, y) = constant ≡ 2β

So if we set θ(x, y) ≡ φ(x, y)− 2βδxy we have
∑

x θ(x, y) = 0 and

q(x) = α+ βεµνFµν(x) + 1
2

∑
yθ(x, y)εµνFµν(y)
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The last term is a divergence term since

θ(x, y) = θ0(x, y) + θ1(x, y), θ1(x, y) ≡ δx0y0

∑
z0
θ(z, y)|z1=x1∑

x0
θ0(x, y) =

∑
x1
θ1(x, y) = 0

⇒ θ0(x, y) = ∂0
∗h0(x, y), θ1(x, y) = ∂1

∗h1(x, y)

We have thus shown that

q(x) = α+ βεµνFµν(x) + ∂µ
∗kµ(x)

kµ(x) = 1
2

∑
y

hµ(x, y)ενρFνρ(y) QED
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SU(n) gauge theories

The cohomology problem is much harder in this case!

Reduction to the abelian case?

SU(n) → U(1)× . . .× U(1) (diagonal subgroup)

q = c+ ∂µ
∗kµ on the subspace of all these fields

Presumably the cohomology classes are labelled by the

associated abelian Chern monomials c

Suzuki ’00, M.L. ’00, Igarashi, Okuyama & Suzuki ’02
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Explicit constructions of topological fields

? Geometric constructions

• Principal bundles ↔ cohomology classes

• Characterized by transition functions

• Obtain these using smooth interpolation

M.L. ’82, Phillips & Stone ’86,’90

? Via the axial anomaly & the Ginsparg–Wilson relation

Hasenfratz, Laliena & Niedermayer ’98
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