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Consider a “pure” chiral gauge theory

L(x) = − 1
2g2

tr {Fµν(x)Fµν(x)}+ ψ(x)P+γµDµψ(x)

where the fermions are in an anomaly-free representation
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What would we like to achieve?

Find a lattice formulation of these theories such that

? locality is preserved

? gauge invariance and the lattice symmetries

are unbroken

? the correct continuum limit is obtained to all orders

in the gauge coupling

1



Basic framework

• Quantization through the (euclidean) functional integral

〈φ1(x1) . . . φk(xk)〉 =
1
Z

∫
fields

φ1(x1) . . . φk(xk) e−SG−SF

• Space-time → 4d lattice with spacing a

• Lattice Dirac operator D satisfying

γ5D +Dγ5 = aDγ5D, D† = γ5Dγ5
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Gauge field → link variables U(x, µ)

SG =
1
g2

∑
�

S�

↑
function of U� =

x

= 1 + a2Fµν(x) + O(a3)

Choose S� such that

? all symmetries are preserved

? S� = −a4tr{FµνFµν}+ O(a5)

? S� <∞ implies ‖1− U�‖ ≤ ε ⇒ D is local, . . .
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ψ(x), ψ(x) = lattice Dirac fields in a representation R of G

SF = a4
∑

x

ψ(x)Dψ(x)

Chiral projectors

P± = 1
2(1± γ5), P̂± = 1

2(1± γ̂5), γ̂5 ≡ γ5(1− aD)

By imposing the constraints

P̂−ψ = ψ, ψP+ = ψ

the right-handed components are eliminated
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The chiral constraints are

? consistent with the field equations

? local & gauge-covariant

⇒ completely satisfactory formulation at the classical level

It remains to define the integration measures . . .

D[U ] =
∏
x,µ

dU(x, µ) (normalized invariant measure)
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Space of all Dirac fields

ψ = 0

subspace of left−handed
fields moves

Fermion measure

ψ(x) =
∑

j

cjvj(x)
↑

orthonormal basis of left-handed fields

Definition & phase ambiguity

D[ψ] =
∏
j

dcj (Grassmann integration)

vj(x) →
∑

l

vl(x)Qlj ⇒ D[ψ] → detQ︸ ︷︷ ︸ D[ψ]

eiφ[U ]

Similarly define D[ψ] by expanding in some basis functions v̄k
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⇒ the fermion integral yields the standard result∫
D[ψ]D[ψ]ψ(x1) . . . ψ(xl)e−SF

= e−Seff × {sum of Wick contractions}

ψ(x)ψ(y) = P̂−S(x, y)P+, DS(x, y) = a−4δxy

but the partition function

e−Seff =
∫

D[ψ]D[ψ] e−SF = detM, Mkj ≡ (v̄k, Dvj)

has a gauge-field-dependent phase ambiguity
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Remarks

• D[ψ] implicitly depends on the gauge field!

Fujikawa ’79

• The phase of D[ψ] must be specified to

completely define the theory

• Gauge anomaly ⇔ there is no consistent

choice of phase
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How can the phase be fixed?

The theory should respect basic principles

∗ Locality

∗ Gauge invariance & the lattice symmetries

This determines ImSeff up to irrelevant local terms

In the following we are going to work this out a bit . . .
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Variation of the effective action

Consider a curve of gauge fields

Ut(x, µ) = etaηµ(x)U(x, µ)

Ut

U

Differentiation in direction η at U

δηSeff ≡
{

dSeff

dt

}
t=0

→
∫

d4x ηa
µ(x)

δSeff

δAa
µ(x)

(in the continuum limit)
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Some algebra yields

δηSeff = −Tr{δηDP̂−D−1P+}+ iLη

↑
“measure term”

Lη = i
∑

j

(vj, δηvj) ≡ a4
∑

x

ηa
µ(x)ja

µ(x)

The current ja
µ(x)

? characterises the chosen measure

? appears on the rhs of the field equations

⇒ ja
µ(x) should be a local expression in the gauge field

11



Gauge transformations

For a gauge variation ηµ = −∇µω one obtains

δηSeff = ia4
∑

x

ωa(x) {[∇∗µ jµ]a(x)−Aa(x)}

Aa(x) ≡ −1
2 tr {R(T a)γ5aD(x, x)}

= c1d
abc
R εµνρσF

b
µν(x)F

c
ρσ(x) + O(a) (covariant anomaly)

Gauge symmetry is preserved ⇔ [∇∗µ jµ]a(x) = Aa(x)
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Integrability condition

To ensure the local integrability of

δηSeff = −Tr{δηDP̂−D−1P+}+ iLη

it is necessary & sufficient that

δηLζ − δζLη + aL[η,ζ] = iTr{P̂−[δηP̂−, δζP̂−]}

Theorem

Any given current ja
µ(x) satisfying this equation arises from an

underlying fermion measure that is uniquely determined, up to a

constant phase factor, on any simply-connected piece of field space

M.L. ’99

13



We are thus left with the task to construct a

current ja
µ(x) that

• is a local expression in the gauge field

• fulfils the requirement of gauge
invariance

[∇∗µ jµ]a(x) = −1
2 tr {R(T a)γ5aD(x, x)}

• satisfies the integrability condition

δηLζ − δζLη + aL[η,ζ] = iTr{P̂−[δηP̂−, δζP̂−]}

Note : (1) there is no solution if dabc
R 6= 0

(2) ja
µ = O(a) if the representation is anomaly-free
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Equivalent cohomology problem

Consider gauge fields on Lattice× R2

U(z, µ), At(z), As(z), z = (x, t, s)

Define

q(z) = 1
2 Im tr

{[
γ̂5[DtP̂−, DsP̂−] +R(Fts)γ̂5

]
(x, x)

}
Using the GW relation it can be shown that

a4
∑

x

∫
dtds δq(z) = 0

for all local deformations of the gauge field, i.e. q is topological
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In the classical continuum limit

q(z) = 1
6c1d

abc
R εµνρσλδF

a
µν(z)F

b
ρσ(z)F c

λδ(z) + O(a)

i.e. q(z) has trivial cohomology at a = 0 ⇔ dabc
R = 0

The higher-order terms in the expansion are trivial, because there are no Chern

monomials with dimension d > 6

Theorem

At any a > 0 the following statements are equivalent:

1. q(z) has trivial cohomology

2. there exists a local current ja
µ(x) that has all

the required properties
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U(1) theory with N left-handed fermions

Anomaly cancellation condition

N∑
α=1

e3
α = 0

q(z) has trivial cohomology if this holds since

q = Chern monomial + divergence term

for any a > 0

⇒ abelian chiral gauge theories can be put on the

lattice without breaking the gauge symmetry!

M.L. ’98, Kikukawa ’01
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Remarks

• jµ(x) is obtained from q(z) by differentiation and

one-dimensional integrations

Kadoh, Kikukawa & Nakayama ’03, Kadoh & Kikukawa ’04

• The construction of the theory is non-perturbative

and completely rigorous

• Global obstructions along non-contractible loops are

absent if the eα are even or paired (eα = ±eα∗)
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Non-abelian theories

The cohomology problem has not been solved to date

⇒ no general result is available

Currently the solved cases are

? Real & pseudo-real representations (trivial)

? SU(2)×U(1) electroweak theory

Kikukawa & Nakayama ’00

? All orders of perturbation theory (any gauge group

and fermion representation)

H. Suzuki ’00, M.L. ’00
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In perturbation theory one sets

U(x, µ) = exp {gaAµ(x)}

and expands in powers of g

ja
µ(x) =

∞∑
k=0

gk

k!
a4k

∑
x1,...,xk

× L(k)(x, x1, . . . , xk)aa1...ak
µµ1...µk

Aa1
µ1

(x1) . . . Aak
µk

(xk)

Locality :

L(k) decays rapidly if ‖xj − x‖ > a few lattice spacings

Gauge invariance & integrability :

= set of linear equations for the L(k)
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Theorem

If dabc
R = 0 there exist lattice functions L(k) such that

? ja
µ(x) has the required properties to all orders

? L(k) = 0 for k ≤ 3

? ImSeff transforms like a pseudo-scalar

The L(k) are obtained algebraically through a recursive procedure

Solution is unique up to Seff → Seff + ∆S, where ∆S is local, gauge-

invariant, pseudo-scalar & irrelevant

Anomaly-free chiral gauge theories can be regularized

without breaking the gauge symmetry
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Further developments

Global anomalies

Example: G = SU(2), R = 1
2

The phase of the fermion

measure cannot be fixed globally

Bär & Campos ’99ff

U = 1
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Field Space

4+1 dimensional approach

Using domain-wall instead of

GW fermions

Alvarez-Gaumé, S. & V. Della Pietra ’85

Kaplan ’92, Shamir ’93

Aoyama & Kikukawa ’99, Kikukawa ’01
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s = Lss = 0

modesmodes
right−handedleft−handed
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