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Banks—Casher relation

The chiral condensate in QCD is given by

Y = lim lim (au) = mp(0,0)

m—0V—oo

where p(\,m) is the spectral density of the Dirac operator

Banks & Casher '80

On the lattice

e the relation remains valid if chiral symmetry
is preserved

e may in principle be used to compute the condensate
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How about Wilson quarks?

Spectrum of the hermitian Wilson—Dirac operator 75D,, on a 48 x 243 lattice
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© Renormalization of spectral observables
@ O(a)-improved Wilson theory

© ChPT and finite-volume effects

@ Numerical studies
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@ Counting low modes on large lattices



Renormalization of spectral observables
First consider the continuum theory

D) = (m 4 i)y

Dyl Dypth = a,

a=m?+ )\
Average no of eigenstates of D,/ D,, with a < M?

A
v(M,m) = V/ dAp(\,m),  M?*=m?+A?
—A

Is this a renormalizable quantity?

Del Debbio, Giusti, M.L., Petronzio & Tantalo '06
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Consider the spectral sums
O'k‘(.uﬂ m) = <TI‘{ (DmTDm + M2) _k}>

o0 2kM
0 (M2 + p2)™"
* Well-defined if 4> > 0 and k>3

* For fixed k, the relation v(M, m) < ok (u, m)
is invertible

* It is therefore sufficient to understand the
renormalization of o (u, m)
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Note that
(Dod D + %)™
is the square of the quark propagator in tmQCD

=> introduce N doublets of twisted-mass valence quarks

N
Sval = / d'e 3", (@) (D + ipys ™ () G
n=1

— p+ p-
Pi:]l': = ¢i757i1/’j

os(p,m) = —/d4$1 .. dizex

(P (1) Pog(22) P3y (03) Py (24) P35 (05) Py (w6) )
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The partially quenched theory is renormalized through
mg = ZFjlm7 MR = ZP_’ly’v (‘Pz:jt)R = ZPPZ:]t
Short-distance singularities

Py (@)Py(y) ~ lo—yl*S}"(y)

T—y

are integrable and the total degree of divergence is negative if £ > 3

Renormalized spectral sums and mode number

2kM

(Z 2M2 )k-l—l
——
Mg

S
ZP or(Zpur, Zpmg) = ZF_,Q/ dM v(M, Zpmg)
0

vR(Mw,mr) = v(Zp Mg, Zpmg)

ECT Trento, 5.-9. May 2008 Renormalization of spectral observables 8/21



O(a)-improved Wilson theory

Consider the hermitian eigenproblem
Dyl Dptp = atp
v(M,mgq) = (No of eigenvectors with o < M?), Mg = Mo — Me
Define spectral sums and introduce twisted-mass valence quarks
= (Te{ (Dl Do + 7))

2kM

— [ aAM (M, my) —
/0 ( q) (M2+u2)k+1

o3(n,m) = —a** Z (Pih(1) Pyg(w2) . .. Pag(5) Py (x6))

Z1,.-5T6
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O(a)-improvement & renormalization

ZA(l + bAamq)
Zp(1+ bpamy)

MR = Zm (1 + bpamg)mg = m, m: PCAC quark mass

pr = Zu(1 4 buamq)p
(PR = Zp(1 + bpamq) Py

=> renormalized spectral sums

(ZP 1+ bpamg

2
1+bppamq> ok, mq) where p = p(pur, mg), ...
———

short-distance correction
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Differentiating with respect to u, it can be shown that
Z;LZP:17 bu-f-bp—bppzo

1+ bpamq _ 1 n
1+ bppamgq  Z,(1 + byamy)

Zp O(a?)

= up to O(a?) terms, the renormalized mode number is given by
vrR(Mwr,mr) = v(M,mq) where Mg = Z,,(1+ byamq)M,

MR = Zm (1 + bpamg)mg

Note: b, = —% —0.11 x gg + ... [Frezzotti, Weisz & Sint '01]
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Chiral perturbation theory

In the continuum limit and for V' — oo

v(M,m) =

2 MT% - Mphys m™m

(where M? = m? + A?)

Smilga & Stern '93; Osborn, Toublan & Verbaarschot '99; M.L. & L.G. '08
e The 1-loop correction vanishes when m — 0
e Expected to be fairly small (a few % perhaps) at

M, < 300 MeV, A =50 — 100 MeV
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At small m and moderate A

7w v(M,m)
Yot (M, -
n(Mm) =5 =3y
should thus be a good approximation to X

NLO ChPT also suggests that the finite-volume effects
Eeﬂ?

1
1~ e_EMAL
2eff|V:c>o

A
2 2
M3 = = M?
are negligible (a fraction of a percent) in the p-regime
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When AXV is not very large, there could be important threshold effects
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How to count the low modes

Need a robust method that scales well with the lattice volume
Py = 0(M? — DmTDm) = projector to the low modes
O[U| = Tr{Py}
v(M,mg) = (O)

1/2

* Relative statistical error scales like V'~

* However, reliably calculating O(V) eigenvalues
may not be practical

ECT Trento, 5.-9. May 2008 How to count low modes 15/21



Stochastic method

n(x) : gaussian random spinor field, ((n,m)) =12V

~

v(M,mq) =(0),  O[U,n] = (n, Pan)

o~

var(0) = var(O) + v(M, mq)

= the relative error still scales like V—1/2

For the computation of
Pyn = 0(M?* — D, D,)n

one may use a rational approximation to the f-function
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Define: 15

T A2
= M 1+10-2
Dyl Dy, + M2 ! .
h(X)zl{l—XP(XQ)} osp .
2
where P(X?) = polynomial NE <2.3x10°15
approximation to (X?2)~1/2 -
4, 2yt ‘ ‘ 1 :
= h(X)" = 0(M" = Dnl D) 05 001 002 003 Vo 00
Note:
Shape is independent of V'
=> total effort oc V'
=] =) = = = 9ace
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Numerical studies

Using samples of 80 configurations of the CERN—TorVergata ensembles
Del Debbio, Giusti, M.L., Petronzio & Tantalo '07-'08
Lattice parameters

64 x 323 lattice, B = 5.3, cow = 1.90952, Ny = 2

a = 0.0784(10) fm, L = 2.51(3) fm

Renormalization factors

Za =0.75(1), Zp' = 1.84(3) (lattice — MS at 2 GeV)

Della Morte et al. [ALPHA Collab.] '05
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Ar mg Mg Vr(MR, mR) (Zegr) /3
100 44.1(9)  109.3(4) 75.0(9)(16) 282(4)
25.3(6)  103.2(1) 68.3(9)(14) 273(4)
124(3)  100.8(1) 65.4(8)(14) 269(4)
70 44.1(9) 82.7(5) 46.8(7)(10) 271(4)
25.3(6) 74.4(2) 44.1(7)(9) 266(4)
12.4(3) 71.1(1) 42.3(6)(9) 262(4)

All masses are renormalized in the MS scheme at 2 GeV and are given in MeV

May be compared with the Ny = 2 JLQCD result
$1/3 = 251(7)(11) MeV Fukaya et al. '07

extracted from the lowest eigenvalues of the Dirac operator in the e-regime
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As usual there are

x finite-volume (including threshold) effects
x higher-order chiral corrections
* lattice-spacing effects
that must be studied and eventually “extrapolated away”

=> a larger range of lattices will need to be considered
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Conclusions

Spectral projectors provide a new opportunity to study the
chiral regime of QCD

* Chiral condensate
* Ward identities (— Za, Zs/Zp)

* Topological susceptibility, other low-energy constants, ...

Theoretically clean, moderate effort, small statistical errors,
scales favourably

Matching with ChPT may require (e + p)-regime calculations
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