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Definition & basic properties

SU(N) gauge theory, gauge field Aµ(x)

Consider the “flow of fields” Bµ(t, x), t ≥ 0, defined by

Bµ|t=0 = Aµ

∂tBµ = DνGνµ, Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ]

Atiyah & Bott ’82, . . . [Morse theory of field space]

Remarks

• Purely geometric equation

• The solution is a gauge-covariant function(al) of Aµ(x)
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• The evolution in t has a smoothing effect

∂tBµ = ∆Bµ︸ ︷︷ ︸−∂µ∂νBν + non-linear

heat equation

⇒ Bµ(t, x) =
∫

d4y Kt(x− y)Aµ(y) + gauge & non-linear terms

Kt(z) =
e−

z2

4t

(4πt)2
, smoothing range =

√
8t

• In the quantized theory, a regularization is needed
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• Gradient flow in lattice gauge theory

Vt(x, µ)|t=0 = U(x, µ)

∂tVt(x, µ)Vt(x, µ)−1 = −ag2
0 δx,µS(Vt)︸ ︷︷ ︸

gauge force

= continuous “stout-link smoothing” Morningstar & Peardon ’04

• Observables

For example

E(t, x) = 1
4

(
GaµνG

a
µν

)
(t, x)

〈E(t1, x1) . . . E(tn, xn)〉
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Motivation

? Get insight into the dynamics of non-Abelian gauge fields
at different length scales

? Provide a quantum-field theoretical definition of the
topological sectors in QCD

Typical gauge-field configurations are nowhere continuous . . .

⇔
〈
(F aµν

∗F aµν)(x)(F bρσ
∗F bρσ)(0)

〉
∝
x→0

(x2)−4
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Motivation (cont.)

? Non-perturbative renormalization

? Multilevel simulation algorithms
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Finiteness of the gradient flow

Correlation functions at t > 0 do not require renormalization

In QCD, for example,

〈E〉 =
3

4πt2
αs(q) {1 + k1αs(q) + . . .} , q = (8t)−1/2

• Established to all orders of perturbation theory

• Confirmed through numerical simulations
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Proof of finiteness (ML & Weisz ’10)

Flow equation = Langevin equation w/o noise

∂tBµ = DνGνµ + ηµ

〈ηµ(t, x)ην(s, y)〉 = 2g2
0δµνδ(t− s)δ(x− y)

Basic idea: n-point correlation functions

〈Bµ1(t1, x1) . . . Bµn(tn, xn)〉

are those of a local field theory in a 5d half-space!

⇒ Feynman diagrams, power-counting, local counterterms

Zinn-Justin & Zwanziger ’88
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flow time

4d space0

bulk action Sfl + Sdd̄

boundary action

S + Sgf + Scc̄

Sfl =
∫ ∞

0
dt
∫

d4xLaµ
(
∂tB

a
µ −DνG

a
νµ − α0Dµ∂νB

a
ν

)
↑ ↑

Lagrange multiplier gauge mode damping

5d theory has an exact BRS symmetry!
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Bulk counterterms?

Far away from the boundary t = 0 the propagators are

〈B̃µ(t, p)L̃ν(s,−p)〉 ∝ θ(t− s)
{
δµνe−(t−s)p2

+ gauge terms
}

flow time
〈BB〉 = 〈LL〉 = 0

and there are only LB2 and LB3

vertices

⇒ no loop diagrams

⇒ no counterterms needed
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Boundary counterterms?

• 4d counterterms depending on Aµ, c, c̄ only

• Power counting shows that∫
t=0

d4x
{
zLaµA

a
µ + ghost term

}
is the only possible additional counterterm, but this
term is excluded by the BRS symmetry

⇒ Theory is finite after the usual 4d renormalization!
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Finiteness in lattice gauge theory

On the lattice, finiteness holds at flow times t given in physical units

0 0.05 0.1 0.15

t /r0
2

0

0.1

0.2

0.3

0.4

0.5

t2〈E〉

0 0.01 0.02 0.03 0.04 0.05

t /r0
2

0

0.05

0.1

0.15

1-loop

a = 0.05 fm
a = 0.07 fm
a = 0.10 fm

√   8t = 0.2 fm √   8t = 0.5 fm √   8t = 0.2 fm

12



However . . .

• At fixed a, the flow eventually drives any field to a
local minimum of the action

• Since the minimizing fields depend on the lattice action,
so do the results obtained in this limit

• The lattice-spacing effects are therefore expected
to grow as t→∞
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Illustration (I): U(1) theory in 3d

For any value of the coupling g0 > 0, the string tension

σ ≥ const× exp
{
− k

ag2
0

}
does not vanish! Göpfert & Mack ’82

rg0
2

V(r)g0
−2 decreasing ag

0 2

continuum limit

⇒ Continuum limit is reached
non-uniformly in r
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Illustration (II): Twisted-mass QCD

Isospin is broken by lattice effects

mπ+ −mπ0 = O(a2) > 0

∑
~x〈π0(x)π0(0)〉∑
~x〈π+(x)π+(0)〉

∝ ex0∆mπ

Gets arbitrarily large as x0 →∞ at fixed a

⇒ Infrared-enhanced lattice effects are commonplace!

⇒ In the case of the flow, universality as a→ 0 is guaranteed
only when t is held fixed in physical units
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Application: Definition of the topological charge

Gauge-covariant frequency splitting

Aµ(x) = Bµ(t, x) + ξµ(t, x)
↑

“quantum fluctuation”

Suggests to define

Q(t) =
∫

d4x q(t, x), q(t, x) =
1

32π2

(
Gaµν

∗Gaµν
)

(t, x)
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For any t > 0, the cumulants

Cn(t) =
∫

d4x1 . . . d4xn−1〈q(t, x1) . . . q(t, xn)〉c

are well defined and do not require renormalization

Moreover, since

∂tq =
1

8π2
∂µ
{
∂tB

a
ν
∗Gaµν︸ ︷︷ ︸}

gauge invariant

partial integration shows that Cn is independent of t!
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On the lattice, and at fixed t/r2
0,

Cn(t) = a4n−4
∑

x1,...,xn−1

〈q̂(t, x1) . . . q̂(t, xn)〉c + O(a2)

↑
any reasonable lattice

expression for q(t, x)

In the SU(3) theory, the lattice effects at
√

8t ' r0 are small and

lim
a→0

C2(t)1/4 = 187.4(3.9) MeV

Agrees with computations using GW fermions or the “universal formula”

Del Debbio et al. ’05, Giusti et al. ’02,’04, ML ’04, Giusti & ML ’09, ML & Palombi ’10
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Actually, as a→ 0, the topological sectors emerge dynamically

Q = −1

Q = 0

Q = 1

field space

Q = 2

suppressed like ∼ a6 →

JHEP 1008 (2010) 071 [arXiv:1006.4518]
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Conclusions

The gradient flow allows non-Abelian gauge theories to be
probed at different length scales

• Conceptually well-founded

• Technically attractive

Many applications, most of them still to be explored

• Topological sectors

• Non-perturbative renormalization

• Simulation algorithms with improved
scaling properties
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