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Future applications of the Yang–Mills gradient flow
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Martin Lüscher, CERN Physics Department

• Flow equations & observables

• Chiral condensate

• Small flow-time expansion of local fields

• Wilson’s RG revisited
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Yang–Mills gradient flow

Flow of gauge potentials Bµ(t, x), t ≥ 0, defined by

Bµ|t=0 = Aµ

∂tBµ = DνGνµ, Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ]

Atiyah & Bott ’82, . . . [Morse theory of field space]

Associated flow χ(t, x) of quark fields

χ|t=0 = ψ

∂tχ = ∆χ, ∆ = D/ 2 or simply ∆ = DµDµ, Dµ = ∂µ +Bµ
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• Smoothing property

Bµ(t, x) =

∫
d4y Kt(x− y)Aµ(y) + gauge & non-linear terms

χ(t, x) =

∫
d4y Kt(x− y)ψ(y) + . . .

Kt(z) ∝ exp
{
−z

2

4t

}
, smoothing range =

√
8t

• In the quantized theory, a regularization is needed

Lattice, dimensional regularization
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• Observables

Gauge-invariant composite fields

Et = 1
4G

a
µνG

a
µν

P rst = χrγ5χs, Srst = χrχs

Consider correlation functions of these

Similar to “stout” link and source smearing

Morningstar & Peardon ’04; Güsken ’90; Alexandrou et al. ’91

• Renormalization

OR,t = (Zχ)
1
2 (n+n̄)Ot, n, n̄ = no. of χ and χ fields in O

Note: Zχ is independent of t

Zinn–Justin & Zwanziger ’88; ML & Weisz ’11; ML ’13
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Chiral condensate

Under SU(2)
L
× SU(2)

R
the chiral densities

Srst ± P rst , r, s ∈ {u, d}

transform according to the ( 1
2 ,

1
2 ) representation

⇒ the “time-dependent condensate”

Σt = −〈Suut 〉

is an order parameter for spontaneous chiral symmetry breaking!

? Requires only multiplicative renormalization

? Accurately calculable on the lattice
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Relation to Σ

The PCAC relation implies

Σt = −M
2
πFπ

2Gπ

∫
d4x 〈Pud(x)P dut (0)〉︸ ︷︷ ︸
∼

~p=0, x0→∞
−GπGπ,t

Mπ
e−Mπx0

In the chiral limit, the pion pole dominates

⇒ Σ = lim
mu,md→0

Σt
Gπ
Gπ,t
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Chiral perturbation theory

Suut , Pudt , . . . are represented by local fields

⇒ Σt
Gπ
Gπ,t

= Σ

{
1− 3M2

π

32π2F 2
π

ln(M2
π/Λ

2
t ) + . . .

}

l̄t = ln(Λ2
t/M

2)
∣∣
M=140 MeV

: New (time-dependent) LEC
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Illustration

2+1 flavours, O(a) improved

64× 323, a = 0.090 fm

Mπ = 203 MeV, MK = 520 MeV

PACS-CS ’10; ML & Schaefer ’12

√
8t [fm] a3Σt

Z−1
P Gπ
Gπ,t

0.4 0.003962(61)

0.5 0.003872(55)

0.6 0.003785(51)

0.7 0.003711(48)

⇒ Σt
Gπ
Gπ,t

= [287(2) MeV]3 @
√

8t = 0.5 fm (MS at 2 GeV)
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Small flow-time expansion

General form of the expansion

Ot(x) ∼
t→0

∑
k

ck(t)φk(x)

φk(x) : renormalized local fields at t = 0

The asymptotic behaviour of the coefficients

ck(t) ∝
t→0

t
1
2 (dk−dO)ḡνk{1 + O(ḡ2)}, ḡ at scale (8t)−1/2

is determined by the renormalization group

ML & Weisz ’11
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Example: scalar densities

Use RGI normalization for the quark mass matrix M and all fields

⇒ Srst (x) = c0(t)Mrs + c1(t)tr{M2}Mrs + c2(t)(M3)rs

+ c3(t)Srs(x) + O(t)

c0(t) = − 3

8π2t
{1 + O(ḡ2)}

c3(t) = (2b0ḡ
2)−8/9{1 + O(ḡ2)} =

Gπ,t
Gπ

+ O(t)

⇒ Σ ' Σt
Gπ
Gπ,t

if t and M are such that c0(t)Muu/c3(t)� Σ
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A broader perspective

Represent gauge-invariant local fields through fields at positive flow time

“φ(x) = c(t)Ot(x) + O(t)”

For example

? Energy-momentum tensor H. Suzuki ’13

? Effective electro-weak Hamiltonian

Big plus: Renormalization & O(a)-improvement are radically simplified

χr(t, x)→ {Zχ(1 + bχamq,r)}1/2χr(t, x) ML ’13

χ(t, x)χ(s, y)→ a8
∑
v,w

K(t, x; 0, v){S(v, w)− acflδ(v − w)}K(s, y; 0, w)†
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However . . .

• Coefficients must be accurately calculated

� Perturbation theory H. Suzuki ’13

� Using Ward identities ML ’13

Del Debbio, Patella & Rago ’13

� Step scaling?

• Need a scaling “window”

a�
√

8t� relevant low-energy scales
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Wilson’s RG revisited

Use the “blockspin” RG for

? non-perturbative renormalization

? the construction of coarse-grid actions

Wilson ’79

An assumption implicitly made at the time was that expectation values of
iteratively blocked Wilson loops have a continuum limit

We may now

? replace the blocking by the gradient flow

? and use step scaling
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Step scaling (massless theory)

ML, Weisz & Wolff ’91

Consider a gauge coupling and fields that
run with the lattice size L

Using the gradient flow, a possible choice is

ḡ2 = constant× t2〈Et〉
∣∣√

8t= 1
3L

ML ’10; Fodor et al. ’12; Fritzsch & Ramos ’13

Usually take a→ 0 in the evolution step

Solves the non-perturbative renormalization
problem in the continuum theory

L
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Construction of improved actions

At fixed ḡ, renormalized quantities are constant
up to lattice effects

⇒ tune action & fields so as to minimize the effects

May now be technically feasible by matching

〈tr{GµνGµν}〉, 〈χχ〉, 〈χσµνGµνχ〉,

〈(χΓχ)(χΓχ)〉, Γ = 1, γ5, γµ, γµγ5, σµν ,

etc.

in a range of flow time t
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Concluding remarks

Many ideas presented here are still in their infancy

However, the Yang–Mills gradient flow and its extension to
the quark fields stand on solid theoretical ground

And several applications are already in a ready-to-use state!
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