
Implementation of the lattice Dirac operator ∗

Martin Lüscher January 2012

1. Introduction

In this note, the O(a)-improved Wilson–Dirac operator that is implemented in the

openQCD package is defined, with all normalization conventions specified explicitly.

Apart from the boundary conditions, the conventions coincide with the ones adopted

in the public DD-HMC code [2,3]. Even-odd preconditioning and some technical

issues concerning the Sheikholeslami–Wohlert term are also covered.

2. Definition of the lattice Dirac operator

2.1 Lattice fields

As usual, the theory is set up on a hypercubic lattice with spacing a = 1 and integer

sizes N0, . . . , N3 in the four space-time directions, where Nµ is assumed to be even

and not smaller than 4. With open boundary conditions [4], the time coordinate

x0 of the lattice sites x runs from 0 to N0 − 1 inclusive, the terminal time-slices

being the boundaries of the lattice. In particular, the physical time-like extent of

the lattice is N0 − 1 (rather than N0).

A lattice gauge field U(x, µ) is an assignment of an SU(3) matrix to all links (x, µ)

in the specified range of time. For convenience, memory space is allocated for the

gauge field on the links (x, 0) at time x0 = N0−1 too, but the field variables residing

there are set to zero from the beginning and remain unchanged in the course of the

simulations.

∗ Based on notes written in collaboration with Peter Weisz and Ulli Wolff [1].

1

Quark fields ψ(x) live on the sites x of the lattice. They have two indices, a Dirac

index A = 1, . . . , 4 and a colour index α = 1, 2, 3 on which the gauge field acts. The

values of the quark fields at the boundaries x0 = 0 and x0 = N0 − 1 are not used

and are set zero when the fields are initialized. In the openQCD package, SU(3)

matrices, colour vectors and quark spinors are represented by structures that can

be treated as single data items (see include/su3.h).

2.2 Wilson–Dirac operator

The (unimproved) Wilson–Dirac operator can be written in the compact form

Dw =
3∑

µ=0

1

2
{γµ(∇∗

µ + ∇µ) −∇∗
µ∇µ} , (2.1)

where

∇µψ(x) = U(x, µ)ψ(x + µ̂) − ψ(x), (2.2)

∇∗
µψ(x) = ψ(x) − U(x − µ̂, µ)−1ψ(x − µ̂), (2.3)

denote the gauge-covariant forward and backward lattice derivatives. The symbol µ̂

here stands for the unit vector in direction µ and the Dirac matrices γµ are specified

in appendix A.

More explicitly, in the range 0 < x0 < N0 − 1, the action of the operator on a

given quark field ψ is given by

Dwψ(x) = 4ψ(x)−

3∑

µ=0

1

2

{
U(x, µ)(1 − γµ)ψ(x + µ̂) + U(x − µ̂, µ)−1(1 + γµ)ψ(x − µ̂)

}
, (2.4)

where it is understood that the coordinates xµ ± 1 are taken modulo Nµ for all

µ = 1, 2, 3 (i.e. in these directions, periodic boundary conditions are imposed). At

the boundaries x0 = 0 and x0 = N0−1, on the other hand, Dwψ(x) = 0 by definition.

The operator is thus guaranteed to map quark fields onto quark fields satisfying the

same boundary conditions.

2

x

xµ

ν

Fig. 1. Graphical representation of the products of gauge field variables contributing

to the lattice field strength tensor (2.8). Each square corresponds to one of the terms

in eq. (2.9).

2.3 O(a)-improved operator

Apart from the Sheikholeslami–Wohlert term [5] and a boundary O(a) correction, it

is convenient to include the bare quark mass m0 in the Dirac operator. The massive

O(a)-improved Wilson–Dirac operator is then given by

D = Dw + δDv + δDb + m0, (2.5)

where

δDvψ(x) = csw

3∑

µ,ν=0

i
4
σµνF̂µν(x)ψ(x), (2.6)

δDbψ(x) = (cF − 1){δx0,1 + δx0,N0−2}ψ(x). (2.7)

In these equations, csw and cF are adjustable improvement coefficients and

F̂µν(x) = 1

8
{Qµν(x) − Qνµ(x)} , (2.8)

Qµν(x) = U(x, µ)U(x + µ̂, ν)U(x + ν̂, µ)−1U(x, ν)−1+

U(x, ν)U(x − µ̂ + ν̂, µ)−1U(x − µ̂, ν)−1U(x − µ̂, µ)+

U(x − µ̂, µ)−1U(x − µ̂ − ν̂, ν)−1U(x − µ̂ − ν̂, µ)U(x − ν̂, ν)+

U(x − ν̂, ν)−1U(x − ν̂, µ)U(x + µ̂ − ν̂, ν)U(x, µ)−1, (2.9)

a symmetric lattice representation of the field strength of the gauge field (see fig. 1).

3

The normalization conventions in these equations coincide with the ones adopted

in ref. [6] and in most other papers on the subject. Boundary conditions are imposed

as described before. In particular, Dψ(x) = 0 at time x0 = 0 and x0 = N0 − 1, and

the field strength is calculated assuming periodic boundary conditions for the gauge

field in the space directions. Note that the field tensor is only needed in the range

0 < x0 < N0 − 1.

2.4 Block Dirac operators

Some of the solvers for the Dirac equation included in the openQCD package make

use of a domain-decomposition (SAP) preconditioner. The domains are taken to be

rectangular blocks of lattice points. On each block Λ, the block Dirac operator DΛ

is defined by

DΛ = PΛDPΛ, (2.10)

where

PΛψ(x) =

{
ψ(x) if x ∈ Λ,

0 otherwise,
(2.11)

projects any quark field ψ to the block.

The projection (2.10) amounts to imposing Dirichlet boundary conditions on the

block boundaries. In addition, the boundary conditions imposed at time x0 = 0 and

x0 = N0 − 1 on the global lattice are inherited.

3. Even-odd preconditioning

The discussion in the following applies to both the global and block Dirac operators,

but for simplicity only the global Dirac operator is considered.

A lattice point x is classified as even or odd depending on whether the sum of its

coordinates, x0 + x1 + x2 + x3, is even or odd. Any quark field ψ may be split into

two parts,

ψ = ψe + ψo, (3.1)

where ψe is supported on the even sites and ψo on the odd sites. If the lattice points

are labeled such that the even ones come first, the Dirac operator assumes the block

4

form

D =

(
Dee Deo

Doe Doo

)
. (3.2)

The operators Deo and Doe, for example, are the sums of the hopping terms in

eq. (2.4) from the odd to the even and the even to the odd points respectively.

In the following, it is taken for granted that the diagonal part

Dee + Doo = M0 + csw

3∑

µ,ν=0

i
4
σµνF̂µν , (3.3)

M0ψ(x) =

{
(4 + m0 + cF − 1)ψ(x) if x0 = 1 or x0 = N0 − 2,

(4 + m0)ψ(x) otherwise,
(3.4)

of the Dirac operator is invertible. For any given source field η, the Dirac equation

Dψ = η can then be solved by first solving

D̂ψe = ηe − DeoD
−1
oo ηo, (3.5)

for ψe, where

D̂ = Dee − DeoD
−1
oo Doe (3.6)

denotes the even-odd preconditioned Dirac operator. After that the odd field com-

ponent is obtained through

ψo = D−1
oo {ηo − Doeψe} . (3.7)

Note that D̂ is a linear operator acting on quark fields defined on the sublattice of

all even points.

Even-odd preconditioning goes along with the factorization

detD = detDoo det D̂ (3.8)

of the quark determinant. An important detail to keep in mind is the fact that, by

definition, Doeψ(x) vanishes at the boundaries x0 = 0 and x0 = N0−1 of the lattice.

As a consequence, the operator product on the right of eq. (3.6) involves the inverse

of Doo on the odd sites x in the range 0 < x0 < N0 − 1 only. For the same reason,

the determinant detDoo is a product of determinants, one for each odd point in this

range of time.

5

4. Computation of Dee and Doo

The computation of the SW term tends to be slow, because there are quite many

products and sums of SU(3) matrices that must be evaluated. Taking the inverse

of Doo, as is required for even-odd preconditioning, makes things even worse. The

diagonal parts of the Dirac operator are therefore computed separately and stored

in an array before the operator is applied. As long as the gauge field is unchanged,

the array does not need to be updated, which saves a lot of work.

4.1 How many multiplications are required?

In the representation of the Dirac matrices specified in appendix A, the Pauli term

3∑

µ,ν=0

i
4
σµνF̂µν =

3∑

k=1

i
16

(
σk (Ek − Bk) 0

0 −σk (Ek + Bk)

)
(4.1)

has a block diagonal form. A factor 8 was included here in the definition

Ek = 8F̂0k, Bk =
3∑

l,j=1

4ǫkljF̂lj , (4.2)

of the electric and magnetic components of the field strength. They are then simply

equal to Qµν − Q†
µν for some µ and ν.

The computation of the matrix Qµν(x) at fixed x, µ, ν requires 12 multiplications

of SU(3) matrices. A straightforward code for the SW term will therefore perform 72

multiplications per point. One can do better by running through all plaquettes in the

(0, 1)-plane, then those in the (0, 2)-plane, and so on. On each plaquette there are

four ordered products of link variables to be added to the matrices (Qµν−Q†
µν)(y) at

the corners y of the plaquette. This requires 8 matrix multiplications per plaquette

and thus a total of 48 multiplications per lattice point.

4.2 Storage format

The program that performs these computations stores the computed matrices

M(x) = M0(x) + csw

3∑

µ,ν=0

i
4
σµνF̂µν(x) (4.3)

6

in an array of data structures. First come the matrices at all even points and then

those at all odd points. In Dirac space the matrices have the block form

M(x) =

(
A+(x) 0

0 A−(x)

)
, (4.4)

A±(x) = M0(x) ± csw

3∑

k=1

i
16

σk {Ek(x) ∓ Bk(x)} , (4.5)

as is the case for the Pauli term (4.1).

The fields Ek(x) and Bk(x) are antihermitian 3× 3 matrices in colour space. So if

the Pauli matrices in eq. (4.5) are written out as in

3∑

k=1

iσkak =

(
ia3 ia1 + a2

ia1 − a2 −ia3

)
, (4.6)

the matrices A±(x) assume the form of hermitian 6×6 matrices. Such matrices can

be represented by an array u0, . . . , u35 of real numbers according to





u0 u6 + iu7 u8 + iu9 u10 + iu11 u12 + iu13 u14 + iu15

. u1 u16 + iu17 u18 + iu19 u20 + iu21 u22 + iu23

. . u2 u24 + iu25 u26 + iu27 u28 + iu29

. . . u3 u30 + iu31 u32 + iu33

. . . . u4 u34 + iu35

. u5




, (4.7)

where the entries below the diagonal are related to the other entries by hermiticity.

The matrices A±(x) are thus stored in structures whose only element is an array of

this kind.

4.3 Miscellaneous remarks

As explained in sect. 3, the SW term is not needed at time x0 = 0 and x0 = N0 − 1.

Independently of the quark mass and the improvement coefficients, the matrices

A±(x) at these lattice points are set to unity when the SW term is calculated.

In the openQCD package, the field tensor (2.8) is stored in memory and is reused

when it is up-to-date. Changes in the quark mass are therefore propagated to the

SW term at nearly no cost.

7

5. Inversion of Dee and Doo

As explained in sect. 3, even-odd preconditioning requires the inversion of the diag-

onal part Doo of the Dirac operator on the odd sites of the lattice. This amounts

to computing the inverse of a large number of 6× 6 matrices. Householder triangu-

larization with subsequent inversion by back-substitution is a numerically safe and

reasonably fast method that can be applied here. The technique is widely used and

is described in many text books (see refs. [7,8], for example). The precise form of the

algorithm that is implemented in the openQCD package is discussed in this section.

The fact that Doo may turn out to be ill-conditioned is a possible source of diffi-

culty. Catastrophically large rounding errors are then practically unavoidable when

the matrices M(x) are inverted (see appendix B). The program that performs the

inversion returns with a non-zero error code in this case, which is propagated to the

top level of the simulation program.

5.1 Householder triangularization

In the following, the inversion of a general complex n×n matrix A is considered. The

Householder algorithm transforms the matrix to upper triangular form by applying

a series of reflections of the type

R = 1 − 2
u ⊗ u†

‖u‖2
, (5.1)

where u is some non-zero complex vector in n dimensions. One needs n−1 reflections

to completely triangularize A, i.e. the triangular matrix T that one constructs is

given by

T = Rn−1Rn−2 . . . R1A. (5.2)

The basic idea is to choose the reflections Rk recursively in such a way that the

matrix

Rj−1Rj−2 . . . R1A (5.3)

has no non-zero entries below the diagonal in the first j − 1 columns.

Suppose we have achieved this for all j ≤ k and let us denote the k’th column

vector of the matrix Rk−1 . . . R1A by v. We then take Rk to be of the form (5.1)

8

with

ul =






0 if l < k,

vk − yk if l = k,

vl if l > k,

(5.4)

where yk is given by

yk = −
vk

|vk|
r, r2 =

n∑

j=k

|vj |
2, r ≥ 0. (5.5)

It is easy to check that the first k − 1 columns of Rk−1 . . . R1A are left intact when

this matrix is multiplied with Rk, while the k’th column vector becomes

(v1, . . . , vk−1, yk, 0, . . . , 0). (5.6)

If we continue in this way up to k = n−1, the final matrix (5.2) will hence be upper

triangular with diagonal elements y1, . . . , yn−1,−yn.

Evidently the algorithm breaks down if u vanishes for some k. Noting

1

2
‖u‖2 = r2 + r|vk|, (5.7)

it follows that this happens if and only if A is singular. During the execution of the

program one can easily check that r is positive and take the appropriate action if it

vanishes.

Another potentially unstable situation occurs when vk = 0. It turns out, however,

that this does not present a fundamental difficulty. If vk is so small that |vk| +

r = r to machine precision, we simply set yk = −r. The reflection Rk, defined

through eqs. (5.1),(5.4), then transforms the column vector v to the vector (5.6) up

to rounding errors. Equation (5.7) remains true in the same sense, i.e. to machine

precision. The choice yk = −r is hence completely satisfactory in this case.

5.2 Inversion of T

We now describe the computation of the inverse S of the triangular matrix T , as-

suming that none of the diagonal elements of T vanish. It can be shown that S is

also upper triangular, i.e. the matrix elements tij and sij of T and S are equal to

zero for all i > j.

9

The linear equations from which S is to be determined are

k∑

j=i

tijsjk = δik. (5.8)

Choosing i = k one immediately concludes that

sii = 1/tii. (5.9)

For i < k the equations can then be written in the form

sik = −sii

k∑

j=i+1

tijsjk. (5.10)

They can be solved recursively, first setting k = n, then k = n − 1 and so on, while

for each k one starts with i = k − 1 and continues to i = 1. It is not difficult to

see that the element tik may be overwritten by sik in this process, since tik is not

needed at the later stages of the recursion. In other words, the inversion can be

achieved in place without a second array.

5.3 Final steps

Using the orthogonality of the Householder reflections, it is trivial to show that

A−1 = SRn−1Rn−2 . . . R1. (5.11)

The computation can thus be completed by evaluating the product on the right-hand

side of this equation recursively.

6. Programs

The programs that compute the field tensor (2.8) and the SW term (4.3) are con-

tained in the directories modules/tcharge and modules/sw term respectively. A

list of all available functions is included in the README files in these directories, while

the functionality of the programs is briefly described at the top of the program files.

The programs for the Dirac operator are in the directory modules/dirac. There

are programs implementing the action of D and D̂ on quark fields on the full lattice

and on blocks of lattice points.

10

Appendix A

It is advantageous to work with a chiral representation of the Dirac matrices, where

γµ =

(
0 eµ

(eµ)† 0

)
. (A.1)

A possible choice for the 2 × 2 matrices eµ is

e0 = −1, ek = −iσk (A.2)

(k = 1, 2, 3, and σk are the Pauli matrices). It is then easy to check that

(γµ)† = γµ, {γµ, γν} = 2δµν . (A.3)

Furthermore, if we define γ5 = γ0γ1γ2γ3, we have

γ5 =

(
1 0

0 −1

)
. (A.4)

In particular, (γ5)
† = γ5 and (γ5)

2 = 1. The hermitian matrices

σµν =
i

2
[γµ, γν] (A.5)

that appear in the SW term are explicitly given by

σ0k =

(
σk 0

0 −σk

)
, σij = −ǫijk

(
σk 0

0 σk

)
, (A.6)

where ǫijk is the totally anti-symmetric tensor with ǫ123 = 1.

The hopping terms in the Wilson–Dirac operator involve the projected spinors

φ = (1 − sγµ)ψ, s = ±1. (A.7)

In the programs that implement the operator, these terms are hand-programmed,

following the lines

s = +1, µ = 0 :

φ1 = ψ1 + ψ3

11

φ2 = ψ2 + ψ4

φ3 = φ1

φ4 = φ2 (A.8)

s = −1, µ = 0 :

φ1 = ψ1 − ψ3

φ2 = ψ2 − ψ4

φ3 = −φ1

φ4 = −φ2 (A.9)

s = +1, µ = 1 :

φ1 = ψ1 + iψ4

φ2 = ψ2 + iψ3

φ3 = −iφ2

φ4 = −iφ1 (A.10)

s = −1, µ = 1 :

φ1 = ψ1 − iψ4

φ2 = ψ2 − iψ3

φ3 = iφ2

φ4 = iφ1 (A.11)

s = +1, µ = 2 :

φ1 = ψ1 + ψ4

φ2 = ψ2 − ψ3

φ3 = −φ2

φ4 = φ1 (A.12)

12

s = −1, µ = 2 :

φ1 = ψ1 − ψ4

φ2 = ψ2 + ψ3

φ3 = φ2

φ4 = −φ1 (A.13)

s = +1, µ = 3 :

φ1 = ψ1 + iψ3

φ2 = ψ2 − iψ4

φ3 = −iφ1

φ4 = iφ2 (A.14)

s = −1, µ = 3 :

φ1 = ψ1 − iψ3

φ2 = ψ2 + iψ4

φ3 = iφ1

φ4 = −iφ2 (A.15)

Appendix B

In this appendix, the numerical stability of the matrix inversion algorithm described

in sect. 5 is discussed. For the matrices of interest the inversion requires a relatively

small number of arithmetic operations and the accumulation of rounding errors is

hence not expected to produce an instability. The algorithm is in any case known

to be well behaved in this respect [7,8].

A problem may however arise if the matrix is ill-conditioned. Any initial numerical

uncertainty in the matrix may lead to large changes in the calculated inverse in this

case. The result that one obtains is only meaningful up to such variations.

13

B.1 Condition number

Let A be any complex invertible n × n matrix. In the following the norm ‖v‖ of an

n-component complex vector v is defined through

‖v‖2 =
n∑

k=1

|vk|
2. (B.1)

The associated norm of A and its condition number are then given by

‖A‖ = sup
‖v‖=1

‖Av‖, (B.2)

k(A) = ‖A‖ ‖A−1‖. (B.3)

In terms of the eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn (B.4)

of the hermitean matrix A†A we have

k(A) =
√

λ1/λn. (B.5)

In particular, matrices with condition numbers near 1 are close to being unitary up

to an overall normalization factor. When the condition number is large the matrix

is said to be ill-conditioned.

If A is hermitean its eigenvalues µ1, . . . , µn may be ordered such that µ2
k = λk

and the condition number k(A) is then equal to |µ1/µn|. It should be emphasized,

however, that the eigenvalues of A are in general not directly related to its condition

number. If we take

A =

(
1 z

0 1

)
, (B.6)

for example, the eigenvalues of A are both equal to 1, while

k(A) = ρ +
√

ρ2 − 1, ρ = 1 + 1

2
|z|2, (B.7)

depends on z and can be made arbitrarily large.

14

B.2 Stability of the linear system Av = b

We now consider the perturbed linear system

(A + ǫB)v = b, (B.8)

where ǫ is a small parameter and ‖B‖ ≤ ‖A‖. The perturbation ǫB may be regarded

as a model for the numerical uncertainty in A which may have incurred during its

computation. We are then interested in the sensitivity of the solution vector v on

the perturbation. Neglecting higher orders in ǫ, we have

v = (1 − ǫA−1B)A−1b, (B.9)

and the relative deviation of the perturbed from the unperturbed solution is hence

bounded by

‖v − A−1b‖

‖A−1b‖
≤ ǫk(A). (B.10)

This suggests that the numerical error on the solution vector may be amplified by a

factor k(A) relative to the error on the matrix A.

In any given case the actual error may be significantly smaller, but the bound

(B.10) is not unrealistic in general. For illustration we again consider the matrix

(B.6) and take

B =

(
0 0

z∗ 0

)
, b =

(
1

0

)
. (B.11)

One easily checks that ‖B‖ ≤ ‖A‖ and a short calculation then yields

‖v − A−1b‖

‖A−1b‖
= ǫ|z|

√
1 + |z|2 (B.12)

up to terms of order ǫ2. For large |z| (large condition numbers in other words) the

inequality (B.10) is hence saturated.

We thus conclude that there can be large significance losses when calculating the

inverse of an ill-conditioned matrix. In particular, the inversion algorithm described

in sect. 5 may not be safe in such cases.

15

B.3 Estimating condition numbers

An exact calculation of the condition number k(A) requires the computation of

the extremal eigenvalues of A†A. This may be rather time-consuming and a faster

method to estimate k(A) is clearly needed.

To this end we introduce the Frobenius norm

‖A‖2
F =

n∑

i,j=1

|aij |
2, (B.13)

where aij are the matrix elements of A. Noting

‖A‖2
F = tr {A†A} =

n∑

k=1

λk, (B.14)

it is immediately clear that

‖A‖ ≤ ‖A‖F,

and an upper bound on the condition number k(A) is hence given by

k(A) ≤ kF(A) = ‖A‖F ‖A−1‖F. (B.15)

With some additional work one may also establish the inequality

kF(A) ≤ 1

2
n [k(A) + 1/k(A)] , (B.16)

which shows that kF(A) overestimates k(A) by at most a factor 1

2
n if k(A) is large

(which is the case of interest).

B.4 Stability criterion

In the program that computes the inverse of Doo, the inversion is considered to be

safe if the 6 × 6 matrices A = A±(x) satisfy the bound

kF(A) ≤ kmax = 100. (B.17)

Significance losses of more than 2 decimal places are then excluded and the inverted

matrices are obtained with an estimated numerical precision of at least 14 decimal

places (assuming standard 64 bit floating-point arithmetic). The program returns 1

if the bound is violated and 0 otherwise.

16

A last point to be mentioned here is that the diagonal elements of the triangular

matrix T are bounded from below through

|tii| ≥ ‖A‖F/kmax (B.18)

if (B.17) holds. In particular, the Householder triangularization is guaranteed to be

numerically safe. Equation (B.18) is obtained straightforwardly by inserting

‖A−1‖F = ‖S‖F ≥ |sii| (B.19)

in the definition of kF(A) and using eq. (5.9).

References

[1] M. Lüscher, P. Weisz, U. Wolff, TAO programs for the Dirac operator in O(a)-

improved lattice QCD, ALPHA collaboration internal report (May 1997)

[2] M. Lüscher, Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD,

Comput. Phys. Commun. 165 (2005) 199;

[3] http://cern.ch/luscher/DD-HMC/index.html

[4] M. Lüscher, Stefan Schaefer, Lattice QCD without topology barriers, JHEP 1107

(2011) 036

[5] B. Sheikholeslami, R. Wohlert, Improved continuum limit lattice action for QCD

with Wilson fermions, Nucl. Phys. B259 (1985) 572

[6] M. Lüscher, S. Sint, R. Sommer, P. Weisz, Chiral symmetry and O(a) improve-

ment in lattice QCD, Nucl. Phys. B478 (1996) 365

[7] G. W. Stewart, Introduction to Matrix Computations (Academic Press, New

York, 1973).

[8] G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins University

Press, Baltimore, 1989)

17

