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1. Introduction

The gauge actions supported in the openQCD package include the Wilson plaquette

action, the tree-level Symanzik improved action and related actions. In this note, the

actions are defined and the computation of the molecular-dynamics forces deriving

from them is briefly discussed. The notation and the normalization conventions are

the same as in refs. [1,2].

2. Definition

Let S0 and S1 be the sets of oriented plaquette and double-plaquette loops on the

lattice (see fig. 1). The supported gauge actions are of the form

SG =
1

g2
0

1∑

k=0

ck

∑

C∈Sk

wk(C) tr{1 − U(C)}, (2.1)

where U(C) denotes the ordered product of the link variables U(x, µ) around C and

wk(C) is a weight factor specified below. In order to ensure the correct normalization

of the bare coupling g0, the coefficients ck must be such that

c0 + 8c1 = 1. (2.2)

Moreover, the constraint c0 > 0 is imposed as otherwise there may be fields with

lowest action which are not pure gauge configurations (cf. ref. [3]).
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Fig. 1. Plaquette and planar double-plaquette loops in a (µ, ν)–plane of the lattice.

The sums in eq. (2.1) run over all these loops, where loops differing by their orientation

are considered to be different. Only those loops are included in the sums which are

contained in the range 0 ≤ x0 ≤ T of time x0.

The weight factors wk(C) in eq. (2.1) are equal to 1 except for the space-like loops

C on the boundaries of the lattice at time 0 and T , where

wk(C) = 1

2
cG. (2.3)

As previously discussed in ref. [1], the coefficient cG is required for O(a) improvement

of correlation functions involving fields close to or at the boundaries of the lattice. In

particular, setting cG = 1 ensures on-shell improvement at tree-level of perturbation

theory.

In the case of the Wilson plaquette action,

c0 = 1, c1 = 0, (2.4)

while the tree-level Symanzik improved action is obtained by setting [4]

c0 = 5

3
, c1 = − 1

12
. (2.5)

Another choice of the coefficients,

c0 = 3.648, c1 = −0.331, (2.6)

was proposed by Iwasaki on the basis of a renormalization-group analysis of the pure

gauge theory [5]. In the openQCD main programs, the coefficient c0 is an adjustable

parameter so that one is free to choose any one of these popular actions.
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Fig. 2. In total, there are ten oriented plaquette and planar double-plaquette loops

that pass through all corners of given plaquette. The computation of the force along

the edges of the plaquette deriving from these loops can be simplified by first calcu-

lating the staples shown in this figure and saving them in a temporary array (fat links

on the right).

3. Computation of the gauge force

There are probably many good ways to calculate the force field

F a(x, µ) = ∂a
x,µSG. (3.1)

The method described in the following proceeds from one plaquette to the next and

accumulates the contributions to the force components at the edges of the plaquette

which derive from the loops that pass through all corners of the plaquette (see fig. 2).

By reversing the orientation of a given loop C one obtains a different loop C′. The

contribution to the gauge action of such a pair of loops is

s(C) =
2

g2
0

ckwk(C)Re tr{1 − U(C)}, (3.2)

where k = 0 or 1 depending on whether C is a plaquette or double-plaquette loop.

Now if C passes through the link (x, µ) in the direction from x + µ̂ to x, the depen-

dence of the action (3.2) on the link variable U(x, µ) is made explicit by

s(C) = −
2

g2
0

ckwk(C)Re tr{U(x, µ)V (x, µ; C)} + constant, (3.3)

V (x, µ; C) being the product of the other link variables on the loop. Similarly, if the

loop passes through the link in the opposite direction, the action may be written in
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Fig. 3. Products U(C) of link variables that contribute to the force field at the edges

of the current plaquette. The dot indicates which edge is concerned and also coincides

with the point x in eqs. (3.5),(3.6). The contributions from the loops on the first row

must be multiplied by ±g−2

0
c0w0(C) and those from all other loops by ±g−2

0
c1w1(C).

the form

s(C) = −
2

g2
0

ckwk(C)Re tr{V (x, µ; C)U(x, µ)−1} + constant. (3.4)

The contribution f(x, µ) of these terms to the total force F (x, µ) = F (x, µ)aT a is

f(x, µ) = +
1

g2
0

ckwk(C)P{U(C)}, (3.5)

f(x, µ) = −
1

g2
0

ckwk(C)P{U(C)}, (3.6)

respectively, where U(C) is the product of the link variables around C starting and
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Fig. 4. Plaquettes in a two-dimensional plane of a 64 local lattice. The plaquettes

that are fully contained in the local lattice are those in the grey square. Half of the link

variables on the edges of the other plaquettes must be fetched from the neighbouring

MPI processes. The staples (fat links) at the exterior boundary of the set of plaquettes

shown in the figure must be copied from the neighbouring lattices too.

ending at x, while

P{M} = 1

2
(M − M†) − 1

6
tr(M − M†) (3.7)

projects any 3 × 3 matrix M to the Lie algebra of SU(3).

The computation of the force field may thus proceed in the following steps:

(1) Run through all unoriented plaquettes of the lattice. At a given plaquette, choose

one of the two possible orientations.

(2) Consider the plaquette and double-plaquette loops that pass through all corners

of the current plaquette and that have the chosen orientation. Compute the staples

(fat links) shown in fig. 2.

(3) Compute the plaquette loops plotted in fig. 3 and add or subtract the associated

force contribution to the force field according to eqs. (3.5),(3.6).

In step (3), the number of SU(3) multiplications can be significantly reduced by

factoring common products.
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4. Communication requirements

In the openQCD simulation programs, the local lattices (the parts of the full lattice

on which a given MPI process operates) do not contain all the link variables required

for the computations described in the previous section.

A double-counting of plaquettes can be avoided by locally running through all

(x, µ, ν)–plaquettes, where x is in the local lattice and µ, ν = 0, . . . , 3, µ < ν. The

link variables on the edges of these plaquettes, which are not part of the local gauge

field, must then first be copied from the neighbouring processes (see fig. 4). After

that it is still not possible to compute all staples locally, but the missing ones can be

calculated on the neighbouring lattices and be communicated to the local process

(fat links in fig. 4). It is advantageous to store the copied staples in a buffer before

the calculation of the force starts.
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