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1. Introduction

The inclusion of the charm and the strange quark in lattice QCD simulations is not

completely trivial. In the openQCD package, a version of the RHMC algorithm [1,2]

is used for these quarks. The factorization of the quark determinant, the associated

pseudo-fermion actions and the computation of the forces deriving from them are

briefly described in this note along with further implementation details.

The RHMC algorithm involves a rational approximation and requires reweighting

if the approximation error is not completely negligible. Reweighting is discussed here

too as well as a strategy of how to proceed in the case of master-field simulations

[3], where reweighting is not possible.

2. Quark determinant

The discussion in this section roughly follows the lines of sect. 6.2.6 of ref. [4], which

should be consulted for further explanations. Since the charm and the strange quark

are treated in the same way, it suffices to consider the latter.

2.1 Factorization of the strange-quark determinant

LetD be the massive O(a)-improved Wilson–Dirac operator with bare mass parame-

ter m0 set to the bare mass of the strange quark (see ref. [5] for the exact definition

of D). The RHMC algorithm implemented in the openQCD package makes use of

even-odd preconditioning and thus starts from the decomposition

detD = det(1e +Doo) det D̂ (2.1)
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of the strange-quark determinant. In this equation, D̂ denotes the even-odd precon-

ditioned Dirac operator, 1e the projector to the subspace of quark fields that vanish

on the odd sites of the lattice and Doo the odd-odd part of the Dirac operator. As

explained in sect. 4 of ref. [6], the first factor in eq. (2.1) can be directly included in

the molecular-dynamics Hamilton function.

The other factor is then further decomposed according to

det D̂ = W detR−1, (2.2)

where the operator R is a suitable rational approximation to (D̂†D̂)−1/2 while the

residual factor,

W = det(D̂R), (2.3)

is treated as a reweighting factor.

2.2 Zolotarev rational approximation

The Zolotarev rational function

Rn,ǫ(y) = A
(y + a1)(y + a3) . . . (y + a2n−1)

(y + a2)(y + a4) . . . (y + a2n)
(2.4)

of degree [n, n] approximates 1/
√
y in the range ǫ ≤ y ≤ 1 with the smallest possible

relative deviation

δ = max
ǫ≤y≤1

|1−√
yRn,ǫ(y)| . (2.5)

Somewhat surprisingly, the coefficients a1, . . . , a2n of this optimal rational function,

the proportionality constant A and the approximation error δ can be determined

analytically (see ref. [7]; the results derived there are reproduced in appendix A).

Since the strange quark has a fairly large mass, the eigenvalues of the operator

(D̂†D̂)1/2 = |γ5D̂| (2.6)

are expected to be separated from zero by a safe spectral gap. Once the simulation

has thermalized, a spectral range [ra, rb], 0 < ra < rb, can thus be found, which,

with probability practically equal to 1, contains all eigenvalues.

In the openQCD package, the operator R in eqs. (2.2),(2.3) is taken to be

R = r−1
b Rn,ǫ(r

−2
b D̂†D̂), ǫ = (ra/rb)

2. (2.7)
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With this choice, the norm bound

‖1− |γ5D̂|R‖ ≤ δ (2.8)

holds when the spectrum of |γ5D̂| is contained in the range [ra, rb], i.e. with high

probability in a representative ensemble of gauge fields.

2.3 Further factorizations

The Zolotarev rational function (2.4) may be broken up into two or more factors of

the form

Pk,l =
l

∏

j=k

y + a2j−1

y + a2j
. (2.9)

If n = 12, for example, a possible factorization is

Rn,ǫ = AP1,5P6,9P10,12. (2.10)

Substituting y = r−2
b D̂†D̂ as before, the associated decomposition

detR−1 = constant× det{P−1
1,5 } det{P−1

6,9 } det{P−1
10,12} (2.11)

of the second factor in eq. (2.2) effectively achieves a frequency splitting of the quark

determinant, because the coefficients a1, . . . , a2n are monotonically decreasing,

a1 > a2 > . . . > a2n > 0, (2.12)

and range over the whole spectral interval from 1 down to ǫ.

3. Pseudo-fermion action and strange-quark force

In the following, Pk,l denotes the product (2.9) with y set to r−2
b D̂†D̂. Explicitly,

the product is given by

Pk,l =
l

∏

j=k

D̂†D̂ + ν2j

D̂†D̂ + µ2
j

, (3.1)
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where the parameters

µk = rb(a2k)
1/2, νk = rb(a2k−1)

1/2, k = 1, 2, . . . , n, (3.2)

will be referred to as “twisted masses”.

3.1 Actions and fields

Since the operators Pk,l are Hermitian and strictly positive, the determinants appear-

ing in a decomposition such as (2.11) can be taken into account in the simulations

by including the pseudo-fermion actions

Spf,k,l = (φk,l, Pk,lφk,l) (3.3)

in the molecular-dynamics Hamilton function. The fields φk,l in this expression are

independent pseudo-fermion fields that live on the even sites of the lattice.

Apart from the fact that the product (3.1) may have more than one factor, the

pseudo-fermion actions (3.3) are very similar to the actions discussed in sect. 4 of

ref. [6]. The partial fraction decomposition

Pk,l = 1 +

l
∑

j=k

ρk,l,j

D̂†D̂ + µ2
j

, (3.4)

ρk,l,j = (ν2j − µ2
j )

l
∏

m=k,m 6=j

ν2m − µ2
j

µ2
m − µ2

j

, (3.5)

actually shows that the actions (3.3) are sums of the actions previously considered.

3.2 Forces

The force

F a
k,l(x, µ) = ∂a

x,µSpf,k,l (3.6)

can therefore be computed following the lines of ref. [6]. In the course of this calcu-

lation, the fields

χk,l,j = (D̂†D̂ + µ2
j )

−1φk,l (3.7)

must be computed, which requires the normal even-odd preconditioned Dirac equa-

tion to be solved for j = k, . . . , l and thus possibly many times.
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Since the source field φk,l is the same for all j, the multi-shift conjugate gradient

algorithm [8,9] can be used for the simultaneous solution of the equations. This

works well as long as the masses µk, . . . , µl are not too small. Highly optimized

single-shift solvers may otherwise prove to be more efficient. The openQCD package

includes several solvers and one can choose the solver to be used for each factor Pk,l

separately.

3.3 Pseudo-fermion field generation

At the beginning of the molecular-dynamics evolution, the pseudo-fermion field φk,l

is chosen randomly with the proper distribution (or, in the case of the SMD algo-

rithm, gets rotated in direction of such a random field).

A moment of thought shows that this is achieved by setting

φk,l = Ak,lηk,l, Ak,l =
l

∏

j=k

γ5D̂ + iµj

γ5D̂ + iνj
, (3.8)

where ηk,l is a random field on the even sites of the lattice with normal distribution.

Since

Ak,l = 1 + i
l

∑

j=k

σk,l,j

γ5D̂ + iνj
, σk,l,j = (µj − νj)

l
∏

m=k,m 6=j

µm − νj
νm − νj

, (3.9)

the application of Ak,l to the source field ηk,l amounts to solving the Dirac equation

l−k+1 times. Again the multi-shift CG solver can be used here for the simultaneous

solution of these equations, but in the case of the few smallest masses νj the use of

a highly efficient single-shift solver may be preferable.

4. Stochastic estimation of the reweighting factor W

The Hermiticity properties of the lattice Dirac operator guarantee that the reweight-

ing factor (2.3) is real, but the factor may, in principle, change sign from one gauge-

field configuration to the next. Sign changes are however practically excluded when

the quark mass is set to values as large as the physical strange-quark mass (see ref. [4]

for a more extensive discussion of the issue). In the following, the reweighting factor

is therefore assumed to be positive.
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4.1 Stochastic estimator

Let ηj(x), j = 1, . . . , N , be a set of independent random quark fields on the even

lattice sites with normal distribution. As in the case of the light-quark reweighting

factors discussed in ref. [10], a stochastic estimator for W is given by

WN =
1

N

N
∑

j=1

exp{−(ηj , [(1 + Z)−1/2 − 1]ηj)}, (4.1)

where

Z = D̂†D̂R2 − 1. (4.2)

Recalling the bound (2.8), the inequality

‖Z‖ ≤ δ(2 + δ) (4.3)

is easily established, and since the approximation error δ is, in practice, much smaller

than 1, the inverse square root of 1 + Z in eq. (4.1) is well defined.

4.2 Power series expansion

Actually, the series

(1 + Z)−1/2 = 1− 1
2
Z + 3

8
Z2 − 5

16
Z3 + 35

128
Z4 − . . . (4.4)

is rapidly convergent in the operator norm. The exponents in eq. (4.1) can therefore

be computed by evaluating the first few terms in the expansion

(ηj , [(1 + Z)−1/2 − 1]ηj) = − 1
2
(ηj , Zηj) +

3
8
(ηj , Z

2ηj)− . . . (4.5)

It is possible to estimate the size of these terms by noting that ‖ηj‖2 is very nearly

equal to 12 times the number Ne of even lattice points. Taking the bound (4.3) into

account, the matrix element (ηj , Z
pηj) is thus expected to be less than 12Ne(2δ)

p.

4.3 Statistical fluctuations

The statistical fluctuations of the exponents in eq. (4.1) derive from those of the

gauge field and those of the random sources ηj . For a given gauge field, the variance

of the exponents is equal to

Tr{[(1 + Z)−1/2 − 1]2} = 1
4
Tr{Z2} − 3

8
Tr{Z3}+ . . . (4.6)
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Since the traces Tr{Zp} are at most 12Ne(2δ)
p, these fluctuations are guaranteed to

be small if, say, 12Neδ
2 ≤ 10−4, and one can then just as well set N = 1 in eq. (4.1).

Once the statistical fluctuations of WN at fixed gauge field are small, the variance

of WN in the simulation is practically the same as the one of W . Noting

W = det(1 + Z)1/2 = eF , (4.7)

F = 1
2
Tr{ln(1 + Z)} = Tr

{

1
2
Z − 1

4
Z2 + 1

6
Z3 − . . .

}

, (4.8)

the moment-cumulant transformation implies

〈W 〉 = exp
{

〈F 〉+ 1
2
〈F 2〉c + 1

6
〈F 3〉c + . . .

}

, (4.9)

where 〈. . .〉c stands for the connected expectation value, e.g. 〈F 2〉c = 〈F 2〉 − 〈F 〉2.
For the normalized variance of W , the expression

〈W 2〉
〈W 〉2 − 1 = exp

{

〈F 2〉c + 〈F 3〉c + . . .
}

− 1 (4.10)

is then obtained.

In position space the operator Z and its dependence on the gauge field are quasi-

local with a localization range roughly equal to the Compton wavelength of the

pseudo-scalar meson composed of two valence strange quarks (about 0.2 fm at the

physical point). One can show this by expanding Z in partial fractions and noting

that the position-space kernels of the terms coincide with pseudo-scalar meson prop-

agators. As a consequence, the connected expectation values of F p scale proportion-

ally to Neδ
p on large lattices rather than (Neδ)

p. The variances of the normalized

reweighting factors W and its stochastic approximation WN are thus both of order

Neδ
2 in the large-volume regime of the theory.

5. Master-field simulations with heavy quarks

Since reweighting is not possible in master-field simulations, the reweighting factor

W must be such that the deviations

dW (O) =
〈OW 〉
〈W 〉 − 〈O〉 (5.1)
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of the reweighted from the unreweighted expectation values of the observables O
of interest are negligible with respect to the statistical errors. Here and below the

expectation values 〈. . .〉 are the ones defined in the theory with the approximate

heavy-quark actions. Noting

dW (O) =

〈

(O − 〈O〉)(W − 〈W 〉)
〉

〈W 〉 , (5.2)

the application of the Cauchy–Schwarz inequality

|〈AB〉| ≤ 〈|A|2〉1/2〈|B|2〉1/2 (5.3)

leads to the bound

|dW (O)| ≤ σ(O)
σ(W )

〈W 〉 , (5.4)

where σ(O) denotes the standard deviation of the observable O.

In master-field simulations, the observables O are translation averages of local

(or quasi-local) fields and the statistical errors coincide with σ(O). Sometimes the

observables are additionally averaged over a small ensemble of Nm master fields, in

which case the errors are reduced by the factor 1/
√
Nm if the fields are statistically

independent and otherwise by less than that. The bound (5.4) then implies that

master-field simulations obtain the correct results up to the estimated statistical

errors if, say,

σ(W )

〈W 〉 ≤ 0.1√
Nm

. (5.5)

In order to guarantee that this condition is met, the standard deviation of W must

be measured on smaller lattices and the approximation error δ must then be chosen

appropriately based on the scaling law σ(W ) ∝ δ
√
Ne (cf. discussion at the end of

sect. 4).
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6. Parameter tuning

When a new simulation is started, the required approximation error δ and the ap-

propriate spectral range [ra, rb] may not be known. Reasonable initial choices of δ

are such that 12Neδ
2 ≃ 10−4, while for the spectral interval one may take [ 1

2
am, 8],

for example, where m is an estimate of the bare current-quark mass of the quark

considered.

In the course of the thermalization phase, the parameters will then need to be ad-

justed by calculating the reweighting factor W , following the lines of sect. 4, and the

true spectral range of |γ5D̂| for a subset of the generated gauge field configurations.

The openQCD package includes two main programs, main/ms1.c and main/ms2.c,

that can be used for this purpose.

The computer time required for the simulation increases with the degree of the

Zolotarev rational function. A compromise thus needs to be found, where the number

of poles is as small as possible while the fluctuations of the reweighting factor remain

tolerable. Compromises should however not be made in the case of the spectral

range, since the correctness of the simulation may otherwise be difficult to guarantee.

Adding a safety margin of 10% to the ends of the measured spectral range is therefore

recommended.

Appendix A

The analytic expressions for the coefficients of the rational function (2.4) that min-

imizes the approximation error (2.5) involve the Jacobi elliptic functions sn(u, k),

cn(u, k) and the complete elliptic integral K(k) (see ref. [11], for example, for the

definition of these functions). Explicitly, they are given by

ar =
cn2(rv, k)

sn2(rv, k)
, r = 1, 2, . . . , 2n, (A.1)

where

k =
√
1− ǫ, v =

K(k)

2n+ 1
. (A.2)
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The formulae for the amplitude A and the error δ,

A =
2

1 +
√
1− d2

c1c3 . . . c2n−1

c2c4 . . . c2n
, (A.3)

δ =
d2

(

1 +
√
1− d2

)2
, (A.4)

involve the coefficients

cr = sn2(rv, k), r = 1, 2, . . . , 2n, (A.5)

d = k2n+1 (c1c3 . . . c2n−1)
2
. (A.6)

All these expressions are free of singularities and can be programmed using well-

known methods for the numerical evaluation of the Jacobi elliptic functions.
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