
Discrete Fourier transform

Martin Lüscher January 2015

1. Introduction

The evaluation of the tree diagrams in instantaneous stochastic perturbation theory

[1] requires the relevant free-field equations to be solved a large number of times.

These calculations can be performed efficiently using the fast Fourier transform (see

ref. [2], for example). Depending on the chosen boundary conditions for the fields,

different forms of the Fourier transform need to be considered. In this note, a wide

class of discrete Fourier transformations is introduced and their evaluation using the

fast Fourier transform is described in some detail.

2. Transformation of periodic functions

In field theory, it is helpful to interpret the Fourier transform as a mapping of

function spaces. The boundary conditions considered may then be encoded in the

definition of the latter.

2.1 The function spaces Hb
n

Let n be a natural number and b ∈ {0, 1} a one-bit integer. The space Hb
n consists

of all complex functions f(x), x ∈ Z, satisfying

f(x+ n) = (−1)bf(x). (2.1)

Since such functions are completely specified through eq. (2.1) and their values in

the range 0 ≤ x < n, the dimension of Hb
n is equal to n. The scalar product of any

1



two functions f, g ∈ Hb
n is defined by

(f, g) =
n−1
∑

x=0

f(x)∗g(x), (2.2)

where the star denotes complex conjugation.

2.2 Fourier transform

The Fourier transforms considered are maps

Fbc
n : Hb

n 7→ Hc
n (2.3)

given by

f̃(k) =
n−1
∑

x=0

exp
{

i
2π

n

(

k + 1

2
b
) (

x+ 1

2
c
)

}

f(x) (2.4)

for all functions f ∈ Hb
n. In this expression, the shift 1

2
c ensures that the Fourier

transform f̃ is in Hc
n, while the shift 1

2
b turns the summand into a strictly periodic

function of x. The summation range [0, n) could thus be translated by any distance

without changing the sum.

For all n, b, c, the inverse of the Fourier transform,

[

Fbc
n

]−1
: Hc

n 7→ Hb
n, (2.5)

f(x) =
1

n

n−1
∑

k=0

exp
{

−i
2π

n

(

x+ 1

2
c
) (

k + 1

2
b
)

}

f̃(k), (2.6)

is of the same form apart from the prefactor 1/n and a change of sign in the argument

of the exponential function. Fourier transforms are unitary with respect to the scalar

product (2.2),

(f̃ , g̃) = n(f, g), (2.7)

up to a constant factor.

2



3. Dirichlet and Neumann boundary conditions

Dirichlet and Neumann boundary conditions can be conveniently imposed using the

orbifold trick. There are different choices of the reflection points and a corresponding

set of Fourier transforms.

3.1 The function spaces Kbcd
n

Let n, b be as before and c, d further one-bit integers. The space Kbcd
n consists of all

functions f ∈ Hb
2n that satisfy

f(−x− c) = (−1)df(x) (3.1)

for all x ∈ Z. These functions are completely specified by their values in the range

0 ≤ x ≤ n, the reflection property (3.1) and the periodicity requirement (2.1) (with

n replaced by 2n).

Depending on b, c, d, the function values at x = 0 and x = n are however con-

strained by the reflection and translation properties. The complete list of contraints

is

f(n) = (−1)b+df(n− 1) if c = 1, (3.2)

and

f(0) = 0 if c = 0, d = 1, (3.3)

f(n) = 0 if c = 0, b+ d = 1. (3.4)

The dimension of Kbcd
n is thus equal to n if c = 1 and otherwise equal to n + 1 (if

b = 0, d = 0), n (if b = 1) or n−1 (if b = 0, d = 1). In the classical continuum limit,

the boundary conditions satisfied by the functions in Kbcd
n are independent of c.

The four possible combinations of b and d correspond to the possible combinations

of Dirichlet and Neumann boundary conditions at x = 0 and x = n (see table 1).

3.2 Fourier transform of functions in Kbcd
n

Since Kbcd
n ⊂ Hb

2n, the Fourier operator Fbc
2n naturally acts on the functions f ∈ Kbcd

n .

A little algebra then shows that their Fourier transforms (2.4) are contained in Kcbd
n .

This is consistent with the fact that the dimensions of Kbcd
n and Kcbd

n are the same.

3



Table 1. Boundary conditions in the classical continuum limit

b d x = 0 x = n

0 0 N N

0 1 D D

1 0 N D

1 1 D N

The Fourier transform (2.4) can be rewritten in an alternative form where only

the independent function values appear. In the case of the functions f ∈ Kb1d
n , these

expressions are

f̃(k) =



























2
n−1
∑

x=0

cos
{π

n

(

k + 1

2
b
) (

x+ 1

2

)

}

f(x) if d = 0,

2i
n−1
∑

x=0

sin
{π

n

(

k + 1

2
b
) (

x+ 1

2

)

}

f(x) if d = 1,

(3.5)

while for the functions f ∈ Kb0d
n they are given by

f̃(k) =























2
n
∑

x=0

′

cos
{π

n

(

k + 1

2
b
)

x
}

f(x) if d = 0,

2i
n
∑

x=0

′

sin
{π

n

(

k + 1

2
b
)

x
}

f(x) if d = 1,

(3.6)

where the primed summation symbol indicates that the terminal summands are

counted with weight 1/2.

Another useful observation concerns the inverse of the Fourier transform, which

is related to the forward Fourier transform through

f(x) =
(−1)d

2n

[

Fcb
2nf̃

]

(x) (3.7)

for all functions f ∈ Kbcd
n .

4



4. Fast Fourier transform

In view of the fact that all Fourier transforms can be reduced to the application of

the transformations (2.4) or (2.6), it suffices to consider the numerical evaluation of

these. Moreover, since

Fbc
n = exp

{

i
π

2n
bc
}

Rc
nF00

n Rb
n, (4.1)

Rb
n : He

n 7→ He∧b
n ,

[

Rb
nf

]

(x) = exp
{

i
π

n
bx

}

f(x), (4.2)

attention can be restricted to the Fourier transform with shifts b = c = 0.

4.1 Recursion

If n = 2m is even, the Fourier transform (2.4) may be rewritten in the form

f̃(k) = f̃0(k) + exp
{

i
2π

n
k
}

f̃1(k), (4.3)

f̃ b(k) =
m−1
∑

x=0

exp
{

i
2π

m
kx

}

f(2x+ b). (4.4)

The functions f̃0(k) and f̃1(k) coincide with the Fourier transforms of the function

f(x) restricted to the even and odd points x, respectively. Once these are computed

for k = 0, ..,m− 1, the full function can be reconstructed through

f̃(k) = f̃0(k) + exp
{

i
2π

n
k
}

f̃1(k), (4.5)

f̃(k +m) = f̃0(k)− exp
{

i
2π

n
k
}

f̃1(k). (4.6)

The computation of the Fourier transform of a function in H0
n has thus been reduced

to the computation of the Fourier transform of two functions in H0
m.

Now if n = 2pm for some p > 1, the procedure can be repeated p times. At the end

of the recursion, one is then left with the task of computing the Fourier transform

of 2p functions with m values. If m is fairly small, these Fourier transforms can be

obtained directly (see appendix A). Once this is done, the calculated functions must

be linearly combined according to eqs. (4.5),(4.6) until the Fourier transform of the

input function is obtained.

5



4.2 Data reordering

The procedure outlined in the previous subsection requires a reordering of the func-

tion values f(x) such that the 2p functions that are to be transformed at the lowest

level (those with m values) come one after another. The reordering

f(x) → f(r(x)), x = 0, . . . , n− 1, (4.7)

is achieved with the help of an index array r(x), which is constructed recursively.

Starting from the identity map, r(x) = x, the first step in the recursion moves

the values r(x) at the even positions x to the first n/2 positions in the array and

the values at the odd positions to the remaining n/2 positions. The algorithm then

visits the two blocks of n/2 positions one after the other and moves the array values

within each block in the same way, i.e. such that those at the even positions come

before those at the odd positions. At this point there are 4 blocks that get reordered

one by one in the next step. The recursion ends after p steps when the blocks have

size m.

4.3 Multi-dimensional Fourier transform

The Fourier transformation of a field φ(x) in more than one dimension can be per-

formed in one direction after another. Each of these transformations may require

the data to be rearranged in memory for efficient processing.

For the transformation in a direction with coordinate z, the field array should

preferably be of the form phi[z][i], where i is an index labeling the field elements

at fixed z. The index may include the indices of the field (if any) but must not

depend on z. With this data layout, the fast Fourier transform may be organized

such that the innermost loop runs over the index i.

An MPI program can divide the loop over i among the processes in direction z.

Locally missing data in the z direction must be fetched from the other processes and

be returned to these after the Fourier transform is calculated. All this can be done

so that each process has practically the same load.

6



Appendix A

For small n and b = c = 0, the Fourier transform (2.4) can be evaluated efficiently

using trigonometric identities. For notational simplicity, f(x) and f̃(k) are written

as fx and f̃k.

n = 2. In this case, the transformation

f̃0 = f0 + f1, (A.1)

f̃1 = f0 − f1, (A.2)

only requires additions and subtractions.

n = 3. Setting

u1 = −1

2
, v1 =

√
3

2
, (A.3)

the transformation is given by

z1 = f1 + f2, (A.4)

z2 = v1(f1 − f2), (A.5)

z3 = f0 + u1z1 (A.6)

and

f̃0 = f0 + z1, (A.7)

f̃1 = z3 + iz2, (A.8)

f̃2 = z3 − iz2. (A.9)

n = 4. Setting

z1 = f0 + f2, (A.10)

z2 = f0 − f2, (A.11)

z3 = f1 + f3, (A.12)

z4 = f1 − f3, (A.13)

7



the transformation is given by

f̃0 = z1 + z3 (A.14)

f̃1 = z2 + iz4, (A.15)

f̃2 = z1 − z3, (A.16)

f̃3 = z2 − iz4. (A.17)

n = 5. Four constants,

u2 =
1

1 +
√
5
, v2 =

√

5 +
√
5

2
√
2

, (A.18)

u3 = −u2 −
1

2
, v3 = 2u2v2, (A.19)

need to be introduced in this case. Setting

z1 = f1 + f4, (A.20)

z2 = f1 − f4, (A.21)

z3 = f2 + f3, (A.22)

z4 = f2 − f3, (A.23)

z5 = v3z4 + v2z2, (A.24)

z6 = v3z2 − v2z4, (A.25)

the Fourier transform is given by

f̃0 = f0 + z1 + z3, (A.26)

w1 = f0 + u2z1 + u3z3, (A.27)

w2 = f0 + u3z1 + u2z3, (A.28)

f̃4 = w1 − iz5, (A.29)

f̃3 = w2 − iz6, (A.30)

f̃1 = w1 + iz5, (A.31)

8



f̃2 = w2 + iz6. (A.32)

In order to obtain the Fourier transform with opposite sign of the argument of the

exponential function, it suffices to change the sign of the constants v1, v2, v3 and of

the terms proportional to i in eqs. (A.15),(A.17).

References

[1] M. Lüscher, Instantaneous stochastic perturbation theory, JHEP 1504 (2015) 142

[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes

in FORTRAN: the art of scientific computing, 2nd ed. (Cambridge University Press,

Cambridge, 1992)

9


