
Quadruple-precision summation in openQCD

Martin Lüscher February 2018; last revised October 2019

1. Introduction

On very large lattices, the numerical evaluation of scalar products of quark fields

(and of other sums over all lattice sites) is potentially affected by huge rounding

effects. If the summands are 32-bit floating-point numbers, the problem is, in prac-

tice, avoided by calculating the sum using 64-bit data and arithmetic. Quadruple-

precision arithmetic is however not natively supported on the current generation of

HPC systems. A summation of 64-bit floating-point numbers with quadruple preci-

sion (i.e. with relative errors per addition on the order of 10−32) therefore requires

a software implementation of quadruple-precision data and arithmetic.

While there exist several software libraries supporting quadruple-precision arith-

metic, their use in openQCD would, at present, imply a loss of portability. Moreover,

rather than a full-fledged quadruple-precision math library only an accurate evalu-

ation of lattice sums is required.

In this note the implementation chosen in openQCD is described. It is based on

a representation of quadruple-precision numbers through pairs of double-precision

numbers and the algorithms published by Dekker [1] many years ago. Much of the

material covered here can also be found in chapter 4 of a book of Knuth [2] as well

as in a more recent publication by Shewchuk [3]. The implementation assumes the

IEEE 754 standard for double-precision floating-point data and arithmetic, but is

otherwise entirely portable.

1

2. Double-precision floating-point numbers

In the following some basic knowledge of the IEEE 754 standard for double-precision

floating-point arithmetic is assumed. See ref. [4], for example, for a very readable

presentation of the relevant conventions.

2.1 Representable numbers

According to the standard, a double-precision floating-point number occupies 8 bytes

(64 bits) in the memory of the computer. Only a finite set of numbers can thus be

represented, among them all numbers x of the form

x = ±2p ×
{

1 + d12
−1 + d22

−2 + . . .+ d522
−52

}

, (2.1)

where p is an integer in the range

−1022 ≤ p ≤ 1023 (2.2)

and dk, k = 1, . . . , 52, an arbitrary sequence of 0’s and 1’s. These numbers have

magnitude less than or equal to

21024
{

1− 2−53
}

≃ 1.8× 10308, (2.3)

while the smallest positive number is

2−1022 ≃ 2.2× 10−308. (2.4)

In particular, all non-zero integers n satisfying |n| ≤ 253 are of the form (2.1) and

are thus representable.

Any representable number x is stored in memory as a string b1b2 . . . b64 of bits bk.

If x is of the form (2.1) the bits are determined as follows:

(a) The first bit b1 is 0 for positive numbers and 1 for negative ones.

(b) The next eleven bits, b2 . . . b12, represent the exponent p. Namely, one first

constructs an integer

e = b22
10 + b32

9 + . . .+ b122
0, (2.5)

the biased exponent , and then sets

p = e− 1023. (2.6)

2

Note that e ranges from 0 to 2047. The numbers of the form (2.1) (i.e. the

so-called normalized ones) have 1 ≤ e ≤ 2046 and p is thus restricted to the

range (2.2).

(c) The remaining 52 bits b13b11 . . . b64 are exactly equal to d1d2 . . . d52.

The number 0 is not of the form (2.1) and thus requires special attention. According

to the IEEE standard, both, 000 . . . 0 and 100 . . . 0, are valid bit-string representa-

tions of 0. One may think of these as ±0.

A further set of representable numbers are the so-called subnormal numbers. They

are of the form

x = ±2−1022 ×
{

d12
−1 + d22

−2 + . . .+ d522
−52

}

, (2.7)

where not all digits dk are equal to zero. The corresponding bit string has biased

exponent e = 0, while the digits dk are stored as described above.

The numbers considered so far exhaust all possible bit strings with biased exponent

e < 2047. Bit strings with e = 2047 do not represent real numbers. They are reserved

for special purposes and will not be discussed here.

2.2 Arithmetic operations

The arithmetic operations +,−, ∗, / performed by the computer are denoted by the

round symbols ⊕,⊖,⊗,⊘. In the case of the addition of two representable numbers

u and v, for example, u⊕ v is the representable number delivered by the processor

as the sum of u and v. Evidently u⊕ v cannot in general be equal to the exact sum

u+ v.

The IEEE 754 standard specifies that

u⊕ v = round(u+ v), (2.8)

where round(x) is a representable number near x. In particular, round(x) = x if x

is representable. Five different rounding rules are tolerated by the standard. The

default one is to round to the nearest representable number, and if x happens to be

exactly halfway between two successive representable numbers, round(x) is chosen

to be the one with the last binary digit d52 equal to zero. This rule is often referred

to as “round to nearest with ties to even”.

Rounding away from zero in the case of ties as well as rounding to 0, +∞ or −∞

is also permitted by the standard. While these alternative rules may be supported

by the current processors via special flags or instructions, their use normally requires

some particular action to be taken by the programmer or the user.

3

The same rounding rules are also adopted for the other arithmetic operations.

They do not apply, of course, if an exception such as exponent overflow occurs during

the computations. Note that an exponent underflow cannot occur when adding and

subtracting representable numbers. All such numbers are integer multiples of 2−1074

and the same must therefore be true for the (exact) sum of any two of them. Now

if the sum is greater or equal to 2−1022, rounding yields a representable number of

the form (2.1). And if the sum is less than 2−1022, it must be equal to zero or to a

subnormal number, where rounding has no effect.

From the above it follows that

u⊕ v = (u+ v)(1 + η), |η| ≤ ǫ, (2.9)

where

ǫ = 2−53 ≃ 1.1× 10−16 (2.10)

if the default rounding is used.

3. Quadruple-precision summation

In the following, the double-precision floating-point data and arithmetic are assumed

to comply with the IEEE 754 standard, to the extent described above and with the

default rounding rules.

3.1 Quadruple-precision numbers

A quadruple-precision number is, in this note, an ordered pair (x, y) of representable

double-precision numbers such that x = x⊕ y. The value of (x, y) is the exact sum

x+ y.

It follows from this definition that apart from (0, 0) all other quadruple-precision

numbers have x 6= 0. y must be equal to zero if x is a subnormal number, while in

all other cases the bound

|y| ≤ 2p−53 (3.1)

holds, where p is the exponent of x [cf. eq. (2.1)]. In other words, y represents the

less significant bits of the number. The value of (x, y) determines x and y uniquely,

since x = round(x+ y).

4

Any number of the form

±2p ×
{

1 + d12
−1 + d22

−2 + . . .+ d1052
−105

}

(3.2)

with exponent in the range −969 ≤ p ≤ 1023 and arbitrary binary digits d1, . . . , d105
is equal to the value of a quadruple-precision number. All these numbers are thus

machine-representable in the way described here.

3.2 Exact addition of double-precision numbers

The exact sum u+ v of two double-precision numbers u, v may be represented by a

quadruple-precision number. By definition

w = u⊕ v (3.3)

is representable and (as shown in refs. [2] and [3], for example) the exact remainder

r = u+ v − w (3.4)

is representable too. Furthermore, since w = round(u+ v) = round(w+ r) = w⊕ r,

it follows that (w, r) is a quadruple-precision number with value u+v. Symbolically

one may write

(w, r) = u+ v, (3.5)

even though this notation is an abuse of language. No confusion will however arise

in the following.

The remainder r can be calculated through

r = (u⊖ u′)⊕ (v ⊖ v′′), (3.6)

where

u′ = w ⊖ v, (3.7)

v′′ = w ⊖ u′. (3.8)

Alternatively, if u = 0 or v = 0 or if the exponent of u is greater or equal to the

exponent of v, the simpler formula

r = v ⊖ (w ⊖ u) (3.9)

5

may be employed. Evidently these relations are only meaningful if no exponent

overflow occurs during the computations. Since additions of representable numbers

do not underflow, there is in fact no other instance where eqs. (3.6) and (3.9) would

not apply.

3.3 Addition of quadruple-precision numbers

Let (u, r) and (v, s) be two quadruple-precision numbers. In the following lines an

algorithm is described that yields a quadruple-precision number (w, t), whose value

coincides with the sum of the values of (u, r) and (v, s) up to a relative error of order

ǫ2.

First the exact sums

(a, b) = u+ v, (3.10)

(c, d) = r + s, (3.11)

are computed. (w, t) is then obtained through

(e, f) = a+ (b⊕ c), (3.12)

(w, t) = e+ (f ⊕ d). (3.13)

A rounding error may occur when calculating b⊕ c and f ⊕d, but the effect of these

errors is bounded by

z = (x+ y)(1 + η), |η| ≤ 5ǫ2, (3.14)

where x, y and z denote the values of (u, r), (v, s) and (w, t), respectively. Moreover,

eq. (3.9) may be used to compute the remainders f and t so that

f = (b⊕ c)⊖ (e⊖ a), (3.15)

t = (f ⊕ d)⊖ (w ⊖ e). (3.16)

In total one thus needs 20 additions to compute (w, t). And if r = 0 (so that (u, r)

represents the double-precision value u), the quadruple-precision addition requires

10 double-precision additions.

6

4. Exact multiplication of double-precision numbers

Similarly to the sum of two double-precision numbers, their product can be exactly

represented by a quadruple-precision number. One can then easily devise algorithms

for products of quadruple-precision numbers with relative errors of order ǫ2.

4.1 Splitting algorithm

Let u be a representable double-precision number. The splitting algorithm decom-

poses u into an exact sum

u = u1 + u2 (4.1)

of two double-precision numbers with 26-bit mantissa (i.e. numbers of the form (2.1)

with vanishing bits d26, . . . , d52). The algorithm

a = (227 + 1)⊗ u,

b = a⊖ u,

u1 = a⊖ b,

u2 = u⊖ u1, (4.2)

was invented by Dekker and a relatively simple proof appeared in ref. [3]. Moreover,

the splitting can be shown to be such that |u1| ≥ |u2|.

4.2 Product rule

Now let u and v be two double-precision numbers and

u = u1 + u2, v = v1 + v2, (4.3)

their decomposition in 26-bit numbers according to the splitting algorithm. Clearly,

the products uivj are all representable and therefore exactly equal to ui ⊗ vj . In

order to obtain the representation

uv = x+ y (4.4)

by the quadruple-precision number (x, y), it thus remains to sum these four products

exactly.

7

As it turns out, x and y can be computed through

x = u⊗ v,

c = (u1 ⊗ v1)⊖ x,

d = (u2 ⊗ v1)⊕ c,

e = (u1 ⊗ v2)⊕ d,

y = (u2 ⊗ v2)⊕ e (4.5)

(see sect. 2.5 of ref. [3] for a proof of the correctness of these rules).

5. Programs

5.1 Elementary functions

The program file utils/qsum.c in the modules directory provides the functions

void acc qflt(double u,double *qr),

void add qflt(double *qu,double *qv,double *qr),

void global qsum(int n,double **qu,double **qr),

void scl qflt(double u,double *qr),

void mul qflt(double *qu,double *qv,double *qr).

The first one adds the double-precision number u to the quadruple-precision number

(qr[0],qr[1]),

while the second adds the quadruple-precision numbers qu,qv and assigns the result

to qr. The third function sums each of the quadruple-precision numbers

(qu[k][0],qu[k][1]), k=0,...,n-1,

over all MPI processes and assigns the sums to the quadruple-precision numbers

(qr[k][0],qr[k][1]), k=0,...,n-1.

All additions are performed in quadruple precision using the formulae in sect. 3.

Calling the function scl qflt(u,qr)multiplies (“scales”) the quadruple-precision

number qr by u, while the function mul qflt(qu,qv,qr) assigns the product of qu

8

and qv to qr. All these operations are performed in quadruple precision, the relative

error being at most 6ǫ2.

In these elementary functions, the quadruple-precision numbers are represented

by double arrays of length 2 (or more). The programs take it for granted that the

arrays have these many elements and that the input quadruple-precision numbers

are in the proper condition. Typically a large sum is accumulate by setting

qr[0]=0.0;

qr[1]=0.0;

before the summation loop and adding the summands in the loop using acc qflt()

or add qflt() as appropriate. If so desired, the results can then be summed over

all MPI processes using global qsum().

5.2 Quadruple-precision types

In su3.h the data types

typedef struct

{

double q[2];

} qflt;

and

typedef struct

{

qflt re,im;

} complex qflt;

for quadruple-precision real and complex numbers are defined. Programs for scalar

products, actions, etc. use these types to return quadruple-precision results.

5.3 Ensuring IEEE 754 compliance

On a given machine, and with the chosen compiler and compiler options, the IEEE

754 compliance may not be guaranteed. Computers supporting the x86 instruction

set are a particularly delicate case, because these machines support 80-bit floating-

point arithmetic in addition to the compliant arithmetic.

If the compiler options -Dx64 or -DAVX are set on x86 machines, openQCD exe-

cutes the quadruple-precision arithmetic using SSE instructions. The non-compliant

x86 instructions are then safely avoided. Compliance can usually also be enforced

9

by choosing a combination of compiler flags. The GCC compiler, for example, sup-

ports the option -mfpmath=sse, which guarantees that all floating-point arithmetic

is executed on the SSE registers (this is anyway the default on x86-64 machines).

As a safety measure, the openQCD main programs check the IEEE 754 compliance

at the beginning of the program by calling the function

void check machine(void)

(see modules/utils/mutils.c). The correct functioning of the quadruple-precision

programs can also be thoroughly checked by executing the program check3.c in the

devel/utils directory.

6. Error propagation in large sums

Let x1, . . . , xn be a series of double-precision numbers, whose sum is to be computed

in quadruple precision. In practice each MPI process first sums the locally available

values, using the function acc qflt(), and the complete sum is then obtained by

calling the function global qsum(). Only the arithmetic (rounding) errors accumu-

lated when the sum is calculated are discussed in this section, i.e. inaccuracies in

the data are not taken account.

6.1 Local summation

If y1, . . . , ym are the local values, the partial sums s1, . . . , sm determined by the MPI

process are given recursively through

s1 = y1,

sk+1 = (sk + yk)(1 + ηk), k = 1, . . . ,m− 1, (6.1)

where the errors satisfy

|ηk| ≤ 5ǫ2. (6.2)

The recursion (6.1) implies

sm =
m
∑

k=1

(1 + δk)yk, δk =
m
∏

j=k

(1 + ηj)− 1, (6.3)

10

and sm thus approximates the exact sum up to the deviation

δs =
m
∑

k=1

δkyk. (6.4)

Note that the errors

|δk| ≤ (1 + 5ǫ2)m−k+1 − 1 = 5(m− k + 1)ǫ2 + . . . (6.5)

are of order mǫ2 if mǫ2 ≪ 1, a condition which, in practice, is usually satisfied by a

wide margin.

If the summands yk are all non-negative, it follows from these equations that the

sum is obtained with a relative error of at most 5mǫ2. In general, the absolute error

is bounded by

|δs| ≤ 5mǫ2
m
∑

k=1

|yk| (6.6)

(up to terms of order m2ǫ4) and no statement can be made on the relative error. The

rigorous bound (6.6) is however often far too pessimistic, because rounding errors

tend to have varying sign and therefore partially cancel in large sums.

6.2 Global summation

Suppose now there are np MPI processes and that the local sums z1, . . . , znp
have

already been computed. The program global qsum() sums these numbers using

the MPI Reduce() library function. Usually this implies that the sum is performed

in a hiearchical manner by summing pairs of numbers, then pairs of these sums, and

so on. In the first step, for example, z2k is added to z2k−1 for all k = 1, . . . , np/2. In

each step the summation is preceded by a communication of the numbers obtained

in the previous step to the MPI processes, where the pair sums are to be performed.

One needs ⌈log2(np)⌉ steps of this kind to complete the calculation. The accumu-

lated rounding errors are then at most 5ǫ2 times the number of steps. In practice

these errors thus tend to be totally negligible with respect to the errors accumulated

in the course of the calculation of the local sums.

11

References

[1] T. J. Dekker, A floating-point technique for extending the available precision,

Numer. Math. 18 (1971) 224

[2] D. E. Knuth, Semi-Numerical Algorithms, in: The Art of Computer Program-

ming, vol. 2, 2nd ed. (Addison-Wesley, Reading MA, 1981)

[3] J. R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geo-

metric predicates, Discrete & Computational Geometry 18 (1997) 305

[4] Numerical Computation Guide, SPARCompiler Fortran 2.0, (Sun Microsystems,

Mountain View, 1992)

12

