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1. Introduction

The DFL SAP GCR solver for the Dirac equation included in the openQCD distribution

combines a Krylov-space solver with the Schwarz alternating procedure and local

deflation [1,2]. A technical modification suggested by Frommer et al. [3] was added

later, which led to a simplification of the structure of the algorithm and a slightly

better performance. The various parts of the solver are briefly described in this note.

2. Preconditioned Krylov-space solver

The DFL SAP GCR solver is essentially a preconditioned GCR algorithm that solves

the Dirac equation

Dψ = η (2.1)

for any given source field η, while the Schwarz alternating procedure and low-mode

deflation are elements of the preconditioner M . A flexible form, FGCR, of the GCR

algorithm is used, whereM does not need to have any properties other than being an

approximate inverse of the Dirac operator D. In particular, M may be a non-linear

operator and may involve approximate iterative procedures.

The FGCR solver recursively builds up the Krylov space

Kn = span{η,DMη, (DM)2η, . . . , (DM)nη} (2.2)

and finds the field ψn in MKn−1, which minimizes the square norm of the residue

ρn = η −Dψn. The algorithm stops if

‖η −Dψn‖ ≤ ω‖η‖ (2.3)
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for some specified tolerance ω and norm ‖ · ‖ (the supported norms are the standard

square norm ‖ · ‖2 and the uniform norm ‖ · ‖∞). Since ρn is contained in Kn, the

next Krylov space can be obtained by adding DMρn to the current one. The next

approximate solution is then a linear combination of the fields Mρ0, . . . ,Mρn.

In practice the FGCR algorithm is restarted after generating some maximal num-

ber of Krylov vectors and if the computed approximate solution of the Dirac equation

is not sufficiently accurate. Before a restart, the latter is saved and the new Krylov

space is generated starting from its residue, i.e. the Dirac equation is now solved

with the source set to the residue. The new solution is then added to the saved one,

the algorithm is restarted again, and so on, until the norm of the residue reaches

the desired level.

3. Schwarz alternating procedure (SAP)

The use of the SAP in lattice QCD was proposed long ago in ref. [4] and its imple-

mentation in openQCD still follows the lines of that paper.

3.1 Block grids

A block grid is a division of the global lattice in non-overlapping rectangular blocks

of lattice points. All blocks must have identical shape and there must be an even

number of blocks along all four coordinate axes. Moreover, the block sizes l0, l1, l2, l3
must be even and at least 4.

The point z in a given block with the smallest coordinates (z0, . . . , z3) is referred

to as the base point of the block. Since the number of blocks is even in all directions,

the block grid can be chessboard-coloured, i.e. the blocks can be classified as even

or odd depending on the parity of the sum
∑3

µ=0 zµ/lµ of the block coordinates.

Blocks of lattice points and block grids are important objects in openQCD. There

are, for example, functions mapping fields from the global lattice to fields attached

to the blocks. For technical reasons, each block must currently be fully contained in

the local lattice that contains its base point.

3.2 Multiplicative Schwarz preconditioner

Let Λ be a block in a given block grid,

PΛψ(x) =

{

ψ(x) if x ∈ Λ,

0 otherwise,
(3.1)
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the operator that restricts any quark field ψ(x) to the block points andDΛ = PΛDPΛ

the restriction of the Dirac operator to the block. DΛ acts on block fields like the

full Dirac operator with Dirichlet boundary conditions along the exterior boundary

of the block.

An approximate solution of the Dirac equation (2.1) may now be obtained starting

from ψ = 0 by alternately solving the equation on all even and all odd blocks, in

each step keeping the current solution on the other blocks fixed. On a given block

Λ, this amounts to solving the equation

DΛχ = ρ− PΛD(1− PΛ)ψ (3.2)

and replacing ψ(x) by χ(x) at all x ∈ Λ, where ρ is the current residue η − Dψ.

Note that the field on the blocks in each set (even or odd) of blocks can be updated

independently from one another.

After ncy such (SAP) update cycles, a field

ψ =Msapη (3.3)

is obtained, which solves the Dirac equation to some precision. The operator Msap

implicitly defined in this way may thus serve as preconditioner for the Dirac operator.

Msap is a linear operator, if the block equations (3.2) are solved exactly, but as

previously mentioned, preconditioners may be non-linear and approximate solutions

are therefore acceptable. In openQCD, the block equations are solved by applying

nmr steps of the minimal residual (MR) algorithm, where the latter may be even-odd

preconditioned. Msap then has 2 parameters, nmr and ncy, in addition to the block

size and the choice of preconditioned or ordinary block MR algorithm.

4. Local deflation

The SAP is a smoothing operation that damps the high-mode components of the

residue of the calculated approximate solution of the Dirac equation, while local

deflation is designed to reduce its low-mode components and thus complements the

SAP.
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4.1 Deflation subspace

The term “low mode” is used here for any quark field ψ satisfying

‖Dψ‖2 ≪ ‖ψ‖2. (4.1)

Deflation subspaces can be constructed from sets {ψ1, . . . , ψNs
} of Ns linearly inde-

pendent low modes by projecting them to the blocks of a block grid. On each block

Λ, the projected fields PΛψ1, . . . , PΛψNs
span a linear space of dimension Ns. The

dimension of these deflation subspaces is thus equal to Ns times the number nb of

blocks.

If the projected fields are orthonormalized, block by block, any quark field can be

easily projected to the subspace by computing its scalar products with these basis

fields. The subspace may thus be identified with the linear space of complex vectors

of length Nsnb.

4.2 Preconditioning

Let P0 be the orthogonal projector to a deflation subspace, however constructed,

and A = P0DP0 the restriction of the Dirac operator to the subspace. The quark

fields ψ may then be split into two components according to

ψ = {ψ −Dζ}+Dζ, ζ = A−1P0ψ, (4.2)

where it is taken for granted that the “little Dirac operator” A is a non-singular

operator in the deflation subspace. Since

P0{ψ −Dζ} = 0, P0Dζ = P0ψ, (4.3)

and if all low modes of the Dirac operator have large components along the defla-

tion subspace, the splitting approximately separates the high- from the low-mode

components of ψ.

As a consequence, the deflated preconditioner

Mψ =Msap{ψ −Dζ}+ ζ (4.4)

tends to be much more effective than Msap alone. The little Dirac equation

Aζ = P0ψ, P0ζ = ζ, (4.5)
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must be solved each time the preconditioner is applied, which is potentially costly in

terms of computer time. An exact solution of the equation is however not required

and approximate solutions up to relative tolerances as large as 10−2 are usually

perfectly sufficient.

4.3 Low mode generation

The construction of the deflation subspace along the lines of subsect. 4.1 starts from

a set {ψ1, . . . , ψNs
} of low modes of the Dirac operator. In openQCD these fields are

generated by initializing them to random values and applying Msap and later the

deflated preconditionerM a number of times, the deflation subspace required by the

latter being constructed from the current set of fields.

The process (a form of approximate inverse iteration) systematically lowers the

Rayleigh quotients ‖Dψk‖2/‖ψk‖2, but tends to produce fields that are approxi-

mately linearly dependent, especially in its later phase, where the Rayleigh quotients

are already small. This behaviour can be easily counteracted by orthonormalizing

the fields before the deflated preconditioner is applied.

5. Solver for the little Dirac equation

Each application of the preconditioner (4.4) requires the little Dirac equation

Aζ = λ (5.1)

to be solved for a given source λ. As already mentioned, an accurate solution is not

required, but since the little Dirac operator tends to have a large condition number,

a careful choice of the solver algorithm is important.

5.1 Even-odd preconditioning

The deflation block grid is of the same kind as the one used in the case of the SAP

(see subsect. 3.1). In particular, the block grid can be chessboard-coloured and the

blocks accordingly divide into even and odd ones.

If the blocks are ordered such that the even ones come first, the little Dirac

operator assumes the block-diagonal form

A =

(

Aee Aeo

Aoe Aoo

)

. (5.2)
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The little Dirac equation (5.1) may then be reduced to its even-odd preconditioned

form,

Âζe = A−1
ee {λe −AeoA

−1
oo λo}, (5.3)

Â = 1e −A−1
ee AeoA

−1
oo Aoe, (5.4)

where λe and λo denote the components of the source λ on the even and odd blocks.

Once eq. (5.3) is solved, the odd components of the solution are given by

ζo = A−1
oo {λo −Aoeζe}. (5.5)

Clearly, these equations assume that the diagonal parts Aee and Aoo of the little

Dirac operator are safely invertible (an error condition is raised if this is not so).

5.2 Exact global-mode deflation

The global modes ψ1, . . . , ψNs
that generated the deflation subspace through pro-

jection to the deflation block grid are, by construction, contained in the deflation

subspace. They are low modes of the Dirac operator and thus of the little Dirac

operator too.

The removal of these modes from the even-odd preconditioned little Dirac equation

(5.3) through an oblique projection is, in general, profitable. If v1, . . . , vNs
denote

the orthonormalized even components of the global modes, the “little little Dirac

operator”

Bkl = (vk, Âvl), k, l = 1, . . . , Ns, (5.6)

may be defined and the projection alluded to above is achieved using the projectors

PLχe = χe −
∑

k,l

Âvk(B
−1)kl(vl, χe), (5.7)

PRχe = χe −
∑

k,l

vk(B
−1)kl(vl, Âχe), (5.8)

where χ stands for any element of the deflation subspace.

The projected even-odd preconditioned little Dirac equation

PLÂζ̄e = PLλ̂e, ζ̄e = PRζe, λ̂e = A−1
ee {λe −AeoA

−1
oo λo}, (5.9)

6



derives from eq. (5.3) by left-multiplication with the projector PL and using the

identity PLÂ = ÂPR. Now if ζ̄e solves the projected equation (5.9) and satisfies the

(consistent) constraint

PRζ̄e = ζ̄e, (5.10)

the solution of eq. (5.3),

ζe = ζ̄e +
∑

k,l

vk(B
−1)kl(vl, λ̂e), (5.11)

is obtained by adding a global-mode correction. An inexact solution of the projected

equation moreover yields an approximate solution of eq. (5.3) with residue

λ̂e − Âζe = PLλ̂e − PLÂζ̄e (5.12)

exactly given by the one of ζ̄e.

5.3 Solver algorithm

The projected even-odd preconditioned equation (5.9) is solved using the FGCR

algorithm (the one briefly described in sect. 2) with a non-restarted GCR algorithm

as preconditioner. Non-restarted means that the algorithm stops if the desired level

of accuracy is reached or if the specified maximal number of Krylov vectors has been

generated.

In order to accelerate the computations, the preconditioner is implemented using

single-precision data and arithmetic, but the solution of eq. (5.9) is obtained with

double precision (even if this may often be unnecessary).
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