Zolotarev

Minmax rational approximation to the sign function



The programs in this package serve to compute the coefficients of the optimal rational approximation of degree [2*n+1,2*n] to the sign function. The approximating function is of the form

  x*R(x2)

where R(y) is the (uniquely determined) rational function in y of degree [n,n] that minimizes the error

  max|1-sqrt(y)*R(y)|

in the range epsilon<=y<=1 for a specified value of epsilon>0. R(y) thus approximates 1/sqrt(y) with uniform relative error in this interval.

The optimization problem was solved analytically by Zolotarev a long time ago. See

  N.I. Achiezer, Approximation Theory, (Dover Publications, New York, 1992),

for example. There is another solution of the optimization problem, where R(y) is taken to be a rational function of degree [n-1,n]. Both solutions are referred to as the Zolotarev rational approximation to the sign function. Here only the slightly more accurate [n,n] approximation is considered.

Download

The package Zolotarev-1.0.tar.gz contains the source programs, usage instructions and example main programs. The programs are ISO C89 compliant and should compile and execute correctly on any machine. After unpacking, first read the README file in the top directory.

License

The software may be used under the terms of the GNU General Public Licence (GPL) .


Last updated 20 February 2015