
User’s guide for ranlxs and ranlxd v3.4

Martin Lüscher May 2019

The C programs described in this guide provide a highly efficient implementation

of the RANLUX random number generator [1,2]. There are two interfaces to the

basic algorithm, ranlxs and ranlxd, delivering single- and double-precision random

numbers. Details on the underlying algorithms and their implementation can be

found in the accompanying notes [3].

Machine requirements

For the programs to work as intended, the computer must be able to handle single-

and double-precision floating-point numbers according to the IEEE 754 standard.

Moreover, it is taken for granted that the C data type int has size greater or equal

to 4 and that one of the integer data types int, long or long long has size greater

than 6.

Current processors, operating systems and compilers usually satisfy all these con-

ditions. The programs however check whether this is indeed the case and terminate

with an informative error message if not.

Files

The program files included in the package are:

ranlux.h

ranlxs.c

ranlxd.c

ranlux common.c

testlx.c

timelx.c

1



The last two are main programs that allow the correct functioning and performance

of the ranlxs and ranlxd generators to be checked. It is possible to use the two gen-

erators individually or concurrently. The programs contained in ranlux common.c

are called by the functions in ranlxs.c and ranlxd.c, but are not intended to be

used otherwise.

The externally accessible functions defined in the program files ranlxs.c and

ranlxd.c are

ranlxs ranlxd

rlxs init rlxd init

rlxs size rlxd size

rlxs get rlxd get

rlxs reset rlxd reset

ranlxs and ranlxd are the main subroutines, all other functions being utility pro-

grams that provide access to the state of the generators. For illustration a GNU-style

Makefile that compiles all programs is included in the package.

Compilation

The programs are written in C and comply with the C99 standard of the language.

No special options are required and a command like

cc [options] ranlxs.c ranlxd.c ranlux common.c testlx.c -o testlx

should compile the programs and produce the executable testlx. The programs

are expected to work correctly, even with the most aggressive optimization options,

but it is recommended to check this by running testlx. This program performs a

number of tests and reports the results to stdout.

Initialization

Both generators must be initialized by calling the functions rlx* init (with * being

equal to s or d as appropriate). The synopsis is

#include "ranlux.h"

void rlx* init(int level,int seed);

2



where the seed is an arbitrary integer in the range from 1 to 231− 1. Different seeds

are guaranteed to result in different sequences of random numbers. The initializa-

tion programs set the generators to a definite state and the generated sequences of

random numbers are thus reproducible.

The luxury level has to be equal to 0, 1 or 2, with only the two higher values being

permitted in the case of ranlxd. This parameter controls the statistical quality of

the random numbers generated. For many applications, including large scale Monte

Carlo simulations, the lowest level should already be adequate. Increasing the level

by 1 reduces the residual correlations by several orders of magnitude [1,3].

Random number generation

The functions ranlxs and ranlxd generate random numbers of type float and

double respectively. The synopsis are

#include "ranlux.h"

void ranlxs(float *r,int n);

and

#include "ranlux.h"

void ranlxd(double *r,int n);

Both functions generate n new random numbers and assign them to the first n

elements of the array r. It is left to the user to ensure that r is declared appropriately,

i.e. no check on the array bounds is made. A typical code then looks like

#include "ranlux.h"

#define LVEC 12

float rvec[LVEC];

.

.

rlxs init(1,3456);

ranlxs(rvec,LVEC);

The random numbers generated by ranlxs are uniformly distributed in the range

x/224, x = 0, 1, 2, . . . , 224 − 1.

3



All numbers in this range are exactly representable on computers that pass the tests

performed by the initialization program.

In the case of ranlxd, the generated random numbers are uniformly distributed

in the extended range

x/248, x = 0, 1, 2, . . . , 248 − 1.

They are also exactly representable, but an important detail to keep in mind is the

fact that the mantissa of IEEE 754 double-precision floating-point numbers have 53

bits, i.e. the 5 least significant bits of the generated numbers are always equal to

zero on machines complying with the standard.

I/O routines

While the states of the generators are not directly accessible, it is possible to ex-

tract the complete information on the current states through the functions rlx* get

(where the * again stands for s or d as appropriate). The synopsis is

#include "ranlux.h"

void rlx* get(int *state);

On output the array state contains the desired information in an encoded form.

The array must be declared to have n=rlx* size() or more elements.

At a later stage in the calling program or in another program, the generators may

then be reset to the state defined by the array state by invoking the functions

#include "ranlux.h"

void rlx* reset(int *state);

These programs check that the data passed to them are sane and exit with an error

message if not.

4



Table 1. Execution times in nanoseconds per random number measured on

a machine with Intel Core i3-7100U (2.4 GHz) processor

program code level 0 level 1 level 2

ranlxs C99 8.6 12.8 21.5

ranlxs SSE2 6.2 8.9 14.5

ranlxs AVX2 4.8 6.0 8.3

ranlxd C99 – 21.4 38.9

ranlxd SSE2 – 14.5 25.6

ranlxd AVX2 – 8.2 12.9

Using x86-64 SIMD instructions

The functions that update the states of the generators include SIMD inline assembly

code that may optionally be used on x86-64 machines. To enable the assembly code,

one of the macros SSE2 or AVX2 must be defined at compilation time. With the

GNU C compiler, this can be achieved by setting the option -DSSE2 or -DAVX2 as in

gcc -O2 -DSSE2 ranlxs.c ranlxd.c ranlux common.c timelx.c -o timelx

for example. The Intel compiler icc understands the inline assembly code too and

can be used in place of gcc. If both SSE2 and AVX2 are defined, the former has no

effect.

Most x86-64 machines support SSE2 instructions nowadays, but the full AVX2

instruction set is only supported by the more recent Intel and AMD processors at

this time. The correct functioning of the compiled binaries should in any case be

checked by running the program testlx.

Timing

The computer time required to generate new random numbers depends on the ma-

chine, the luxury level and the compiler options. Some benchmark results, obtained

with the GNU C compiler and the optimization option -O2, are reported in table 1.

5



References

[1] M. Lüscher, A portable high-quality random number generator for lattice field

theory simulations, Comp. Phys. Comm. 79 (1994) 100

[2] F. James, RANLUX: a Fortran implementation of the high-quality pseudo-ran-

dom number generator of Lüscher, Comp. Phys. Comm. 79 (1994) 111 [E: ibid.

97 (1996) 357]

[3] M. Lüscher, Algorithms used in ranlxs and ranlxd v3.4 (May 2019)

6


