
Algorithms used in ranlxs and ranlxd v3.4

Martin Lüscher May 2019

Introduction

In its original form, the RANLUX generator [1–4] delivers uniformly distributed

random numbers in the range

x/224, x = 0, 1, 2, . . . , 224 − 1. (1)

On computers complying with the IEEE 754 standard, this set of numbers may be

represented through single-precision floating point numbers. It is then straightfor-

ward to write a program for the generator that implements the underlying algorithm

exactly. Since one does not refer to any special properties of the hardware other than

those covered by the IEEE 754 standard, a high level of portability is thus achieved.

The generator can also be cast in another mathematically equivalent form that

yields uniformly distributed random numbers in the range

x/248, x = 0, 1, 2, . . . , 248 − 1. (2)

These can be exactly represented by IEEE 754 double-precision numbers, although

in this case not all bits of the fractional part are assigned a random value (the 5

least significant bits are set to 0). It is then up to the user to decide whether single-

or double-precision random numbers should be produced.

While the RANLUX generator has provably good statistical properties, the num-

ber of arithmetic operations that need to be performed per delivered random number

is fairly large. An efficient implementation of the algorithm, exploiting the capabil-

ities of current processors, is thus required to achieve high production rates.

1



Basic algorithm

In the following lines, the algorithm underlying the RANLUX generator is briefly

described. For further details and a theoretical discussion of the generator the reader

should consult ref. [1].

Let X be the set of integers x in the range 0 ≤ x < b, where b is an integer

greater than 1, referred to as the base, that will be specified later. The algorithm

generates a sequence x0, x1, x2, . . . of elements of X recursively, together with a

sequence c0, c1, c2, . . . of “carry bits”. The latter take values 0 or 1 and are used

internally, i.e. the interesting output of the algorithm are the numbers xn, or rather

xn/b if one requires random numbers uniformly distributed between 0 and 1.

The recursion involves two fixed lags, r and s, satisfying r > s ≥ 1. For n ≥ r

one first computes the difference

∆n = xn−s − xn−r − cn−1, (3)

and then determines xn and cn through

xn = ∆n, cn = 0 if ∆n ≥ 0,

xn = ∆n + b, cn = 1 if ∆n < 0. (4)

To start the recursion, the first r values x0, x1, . . . , xr−1 together with an initial

carry bit cr−1 must be provided. The configurations

x0 = x1 = . . . = xr−1 = 0, cr−1 = 0, (5)

x0 = x1 = . . . = xr−1 = b− 1, cr−1 = 1, (6)

should be avoided, because the algorithm yields uninteresting sequences of numbers

in these cases. All other choices of initial values are admissible.

For the RANLUX generator one sets

b = 224, r = 24, s = 10, (7)

and uses only a fraction r/p of the numbers generated by the algorithm. As explained

in ref. [1], the decimation of the full sequence leads to an exponential suppression of

the statistical correlations in the delivered sequence of random numbers. Since the

computer time required per delivered random number grows roughly proportionally

to p, large values of p are a luxury and the chosen values of p are therefore referred

to as “luxury levels” [2].

2



Double-word algorithm

Given a sequence x0, x1, . . . of numbers generated by the basic algorithm, another

sequence may be defined through

x̃n = x2n + x2n+1b, n = 0, 1, 2, . . . (8)

Since

x2n = x̃n mod b, x2n+1 = (x̃n − x2n)/b, (9)

there is a one-to-one relation between the old and the new sequence of numbers.

Clearly, the composed numbers x̃n may assume any integer value from 0 to 248 − 1.

If an associated sequence of carry bits

c̃n = c2n+1 (10)

is introduced, it is straightforward to prove that the recursion

x̃n = ∆̃n, c̃n = 0 if ∆̃n ≥ 0,

x̃n = ∆̃n + b2, c̃n = 1 if ∆̃n < 0, (11)

holds, where the difference ∆̃n is given by

∆̃n = x̃n−s/2 − x̃n−r/2 − c̃n−1. (12)

This recursion is the same as the basic one, but with base b2 and lags r/2 and s/2.

RANLUX may thus be considered a generator of random numbers with either 24 or

48 random bits.

Luxury levels

The basic algorithm is closely related to a classical dynamical system that can be

proved to be chaotic in a strong sense [1]. In particular, any initial correlations be-

tween different states of the generator decrease exponentially as the system evolves.

The dynamical system associated with the double-word algorithm belongs to the

same category and has the same Liapunov exponent. This can be shown analyti-

cally, but is also evident from numerical experiments, where the distance between

3



0 10 20 30 40
t

−12

−8

−4

0

log10δ(t)

Fig. 1. Average distance δ(t) of neighbouring trajectories versus the evolution time

t. Open and full symbols show the results obtained in the case of the basic and the

double-word algorithm. Time is measured in units of full update cycles (i.e. 24 and

12 elementary update steps, respectively).

neighbouring trajectories of the system is measured as a function of time (see Fig-

ure 1; the setup is as in sect. 4.1 of ref. [1]).

Vectors of 24 subsequent elements of the sequence generated by the basic algo-

rithm, separated by p− 24 discarded elements, may thus be expected to be decorre-

lated if p is large enough. In the language of the underlying dynamical system, the

time separation of these vectors is equal to p/24. The scheme corresponds to dis-

carding p/2−12 numbers from the sequence generated by the double-word algorithm

followed 12 used numbers.

If p is set to 218, 404 and 794, for example, a reduction of any initial correlations

by approximately 4, 7 and 14 orders of magnitude is achieved (cf. Figure 1). These

values of p also fare well in the spectral test [5], which probes for correlations among

D-tuples of vectors over the whole period of the generator (see table 1 and refs. [5,1]

for the definition of the “merits” µD).

The luxury levels in table 1 are the ones chosen in the programs ranlxs and ran-

lxd [6] as well as in the ranlx* programs provided by the GNU Scientific Library

[7], while p can be set to any value in the case of the C++ standard library [8] by com-

bining the basic generators ranlux24 base and ranlux48 base with the decimation

routine discard block engine. The C++ library moreover provides two programs,

4



Table 1. Luxury levels and merits µD of the associated linear congruential generators

level p µ2 µ3 µ4 µ5 µ6 µ7 µ8

0 218 1.86 1.73 2.75 1.00 0.94 3.77 3.66

1 404 2.54 1.93 0.87 1.34 5.12 1.12 2.26

2 794 1.15 1.63 0.96 1.65 1.07 2.33 0.48

ranlux24 and ranlux48, with predefined decimation schemes that roughly corre-

spond to level 0 and 2 in table 1.

Integer implementation

The basic and the double-word algorithm can be implemented using either floating-

point or integer arithmetic. Since the latter normally consumes less processor cycles,

it is profitable to use integer arithmetic internally and to convert the numbers deliv-

ered to the calling programs to floating-point format [3]. Moreover, most computers

nowadays natively support 64 bit integer arithmetic. The required number of arith-

metic operations can thus be halved by using the double-word in place of the basic

algorithm.

A further speedup of the generator is achieved by avoiding the branch condi-

tion (11) in the code that implements the double-word algorithm. Introducing the

constants

#define BASE 0x1000000000000L

#define MASK 0xffffffffffffL

which are equal to 248 and 248 − 1, the code

delta=x[n-5]-x[n-12]-c[n-1];

c[n]=(delta<0);

delta+=BASE;

x[n]=(delta&MASK);

performs the update step (11) correctly without generating branch instructions (for

simplicity the tilde on x̃, etc., has been omitted). These lines comply with the C99

standard and should give the right results on any machine.

5



Using x86-64 SIMD instructions

Current AMD and Intel processors support machine-specific SIMD instructions for

short vectors of 64 bit integer data, which can be used to increase the speed of the

RANLUX generator by a factor 2 to 3. C99 compliance is then lost, but in practice

this is of limited importance in view of the omnipresence of these processors.

Both the SSE2 and the more recent AVX2 instruction sets may be used to execute

the double-word algorithm in the vector registers of the processors. In order to

reduce data dependencies, 4 copies of the generator, with different seeds, may be

run in parallel. The highest throughput is then achieved when the states of these

copies are loaded to the 16 vector registers and processed, using AVX2 instructions,

without intermediate load and store operations.

Programs

A set of C programs implementing the algorithms discussed in these notes is de-

scribed in ref. [6]. There are two main functions, ranlxs and ranlxd, that deliver

single- and double-precision random numbers. The corresponding initialization pro-

grams allow any luxury levels listed in table 1 to be chosen, except for level 0 in the

case of ranlxd (it would not make much sense to generate double-precision random

numbers at this level). The initialization of the generators requires some care and

is discussed in the appendix.

The use of x86-64 SIMD instructions may be enabled at compile time. Otherwise

the code is C99 compliant and thus portable. In both cases the programs produce

exactly the same sequences of random numbers.

Appendix

The initialization of the basic algorithm requires the first 24 numbers x0, x1, . . . , x23

and the carry bit c23 to be specified. If the latter is set to zero and the initial values

are written in binary form, the total number of bits that must be provided is 576. In

the version of ranlxs and ranlxd discussed here, the bits are taken from a random

sequence (bn)n≥0 generated recursively through

bn = (bn−13 + bn−31) mod 2. (13)

6



To start the recursion, 31 initial bits must be provided, which may conveniently be

taken to be the binary digits of an integer seed in the range from 1 to 231 − 1.

As discussed in sect. 3.2.2 of ref. [5], the period of the bit sequence defined through

eq. (13) is equal to 231− 1. It is then easy to show that different seeds give different

initial vectors. Actually, 8 vectors of initial values are required, since the single-

and the double-precision programs both run 4 copies of the generator in parallel.

In order to guarantee that different seeds lead to pairwise different initializations of

these, the 24 bits of selected components xn of the initial state vectors are reversed

according to some pattern that distinguishes the generators.

References

[1] M. Lüscher, A portable high-quality random number generator for lattice field

theory simulations, Comp. Phys. Comm. 79 (1994) 100

[2] F. James, RANLUX: A Fortran implementation of the high-quality pseudo-ran-

dom number generator of Lüscher, Comp. Phys. Comm. 79 (1994) 111 [E: ibid.

97 (1996) 357]

[3] K. G. Hamilton and F. James, Acceleration of RANLUX, Comp. Phys. Comm.

101 (1997) 241

[4] K. G. Hamilton, Assembler RANLUX for PCs, Comp. Phys. Comm. 101 (1997)

249

[5] D. E. Knuth, Semi-Numerical Algorithms, in: The Art of Computer Program-

ming, vol. 2, 2nd ed. (Addison-Wesley, Reading MA, 1981)

[6] M. Lüscher, User’s guide for ranlxs and ranlxd v3.4 (May 2019)

[7] GNU Scientific library, https://www.gnu.org/software/gsl/

[8] C++ standard library, https://en.cppreference.com/w/cpp/numeric/random

7


