Stochastic locality and master-field simulations of very large lattices

Martin Lüscher, Theoretical Physics Department, CERN

$35^{\text {th }}$ International Symposium on Lattice Field Theory

$$
\text { Granada, June 19-24, } 2017
$$

Stochastic locality and master-field simulations of very large lattices

Martin Lüscher, Theoretical Physics Department, CERN

$35^{\text {th }}$ International Symposium on Lattice Field Theory

$$
\text { Granada, June 19-24, } 2017
$$

Master-field simulations

Example

- Consider QCD on a 256^{4} lattice with periodic bc $a=0.05 \mathrm{fm} \Rightarrow L=12.8 \mathrm{fm}$
- Generate 1 representative gauge field
- The translation averages

$$
\langle\langle\mathcal{O}(x)\rangle\rangle=\frac{1}{V} \sum_{z} \mathcal{O}(x+z)
$$

of local observables then satisfy

$$
\langle\langle\mathcal{O}(x)\rangle\rangle=\langle\mathcal{O}(x)\rangle+\mathrm{O}\left(V^{-1 / 2}\right)
$$

Note: $1 \times 256^{4}=256 \times 64^{4} \Rightarrow$ does not require astronomical resources!

Outline

- Statistical error estimation
- Some illustrative calculations
- Generation of master fields
\diamond Simulation algorithm
\diamond Global operations \& decisions
\diamond SMD w/o accept-reject step
- Calculation of hadron propagators

Statistical error estimation

The translation average

$$
\langle\langle\mathcal{O}(x)\rangle\rangle
$$

is a stochastic variable with mean $\langle\mathcal{O}(x)\rangle$ and variance

$$
\left\langle\{\langle\langle\mathcal{O}(x)\rangle\rangle-\langle\mathcal{O}(x)\rangle\}^{2}\right\rangle=\frac{1}{V} \sum_{y}\langle\mathcal{O}(y) \mathcal{O}(0)\rangle_{\mathrm{c}}
$$

Statistical error estimation

The translation average

$$
\langle\langle\mathcal{O}(x)\rangle\rangle
$$

is a stochastic variable with mean $\langle\mathcal{O}(x)\rangle$ and variance

$$
\begin{aligned}
\left.\langle\{\langle\mathcal{O}(x)\rangle\rangle-\langle\mathcal{O}(x)\rangle\}^{2}\right\rangle & =\frac{1}{V} \sum_{y}\langle\mathcal{O}(y) \mathcal{O}(0)\rangle_{\mathrm{c}} \\
& =\frac{1}{V}\left\{\sum_{|y| \leq R}\langle\mathcal{O}(y) \mathcal{O}(0)\rangle_{\mathrm{c}}+\mathrm{O}\left(\mathrm{e}^{-m R}\right)\right\} \\
& =\frac{1}{V}\left\{\sum_{|y| \leq R}\langle\langle\mathcal{O}(y) \mathcal{O}(0)\rangle\rangle_{\mathrm{c}}+\mathrm{O}\left(\mathrm{e}^{-m R}\right)+\mathrm{O}\left(V^{-1 / 2}\right)\right\}
\end{aligned}
$$

Double sum over y and z done with computational effort $\propto V \ln V$ using the FFT

Statistical error estimation (cont.)

The variance of the average

$$
\overline{\mathcal{O}}(x)=\left.\frac{1}{n} \sum_{k=1}^{n} \mathcal{O}(x)\right|_{U=U_{k}}
$$

over several fields U_{1}, \ldots, U_{n} is similarly given by

$$
\frac{1}{V}\left\{\sum_{|y| \leq R}\left\langle\langle\overline{\mathcal{O}}(y) \overline{\mathcal{O}}(0)\rangle_{c}+\ldots\right\}\right.
$$

provided the autocorrelation functions of $\mathcal{O}(x)$

* are translation invariant and
* decay rapidly in space

Relative error of $\langle\langle E\rangle\rangle$ [per mille]

Sample calculations

SU(3) gauge theory
96^{4} and 192^{4} lattice with $a=0.1 \mathrm{fm}$
$E=\mathrm{YM}$ action density at gradient-flow time $t \simeq t_{0}$

Using 64 nodes @ CESGA (1536 cores, 8 TB)

Relative error of $\langle\langle E\rangle\rangle$ [per mille]

Sample calculations

SU(3) gauge theory
96^{4} and 192^{4} lattice with $a=0.1 \mathrm{fm}$
$E=\mathrm{YM}$ action density at gradient-flow time $t \simeq t_{0}$

Using 64 nodes @ CESGA (1536 cores, 8 TB)

Sample calculations (cont.)

The topological susceptibility

$$
\chi_{t}=\sum_{|y| \leq R}\left\langle\langle q(y) q(0)\rangle_{\mathrm{c}}+\mathrm{O}\left(\mathrm{e}^{-m R}\right)+\mathrm{O}\left(V^{-1 / 2}\right)\right.
$$

may be calculated with 1 master field

- Fixed-topology effects are $\propto V^{-1}$ and thus subleading!

Brower et al. '03, Aoki et al. '07

- The observable here is

$$
\mathcal{O}(x)=\sum_{|y| \leq R} q(x+y) q(x)
$$

Susceptibility at gradient-flow time t_{0}

Sample calculations (cont.)

The topological susceptibility

$$
\chi_{t}=\sum_{|y| \leq R}\left\langle\langle q(y) q(0)\rangle_{\mathrm{c}}+\mathrm{O}\left(\mathrm{e}^{-m R}\right)+\mathrm{O}\left(V^{-1 / 2}\right)\right.
$$

may be calculated with 1 master field

- Fixed-topology effects are $\propto V^{-1}$ and thus subleading!

Brower et al. '03, Aoki et al. '07

- The observable here is

$$
\mathcal{O}(x)=\sum_{|y| \leq R} q(x+y) q(x)
$$

Susceptibility at gradient-flow time t_{0}

Sample calculations (cont.)

Correlation functions such as

$$
\begin{aligned}
& C_{E}(x)=\langle E(x) E(0)\rangle_{\mathrm{c}} \\
& \underset{|x| \rightarrow \infty}{\propto}|x|^{-3 / 2} \mathrm{e}^{-m|x|}
\end{aligned}
$$

can be calculated too provided $|x| \ll L$

The projection to $\vec{P}=0$ however tends to increase the noise

Generation of master fields

Any correct simulation algorithm may in principle be used

In the thermalization phase

- Use space-time reflections to build configurations from smaller lattices
- May study autocorrelations on these lattices

Generation of master fields (cont.)

Global operations \& decisions must be reconsidered on very large lattices
Solver stopping criterion

$$
\|D \psi-\eta\|_{2} \leq \rho\|\eta\|_{2}, \quad\|\eta\|_{2} \propto \sqrt{V} \quad \text { (in the HMC algorithm) }
$$

Will have to

- Replace $\|\cdot\|_{2}$ by $\|\cdot\|_{\infty}$
- Use SAP, local deflation, multigrid, ...

Generation of master fields (cont.)

HMC accept-reject step
$\Delta H \propto \epsilon^{p} \sqrt{V}, \quad$ loss of significance $\propto V$
\Rightarrow numerical precision must increase with V

Other options include

- Localizing the algorithm

Cè, Giusti \& Schaefer ' $16 \mathrm{f} \rightarrow$ plenary talk by Leonardo Giusti

- Using the SMD algorithm w/o accept-reject step

Generation of master fields (cont.)

Stochastic molecular dynamics (SMD)

Random rotation: $\pi \rightarrow c_{1} \pi+c_{2} v, \quad c_{1}=\mathrm{e}^{-\gamma \epsilon}, \quad c_{1}^{2}+c_{2}^{2}=1$

$$
\phi \rightarrow c_{1} \phi+c_{2} \chi
$$

MD evolution: $\quad(\pi, U)_{t} \rightarrow(\pi, U)_{t+\epsilon}$

Generation of master fields (cont.)

Stochastic molecular dynamics (SMD)

Random rotation: $\pi \rightarrow c_{1} \pi+c_{2} v, \quad c_{1}=\mathrm{e}^{-\gamma \epsilon}, \quad c_{1}^{2}+c_{2}^{2}=1$

$$
\phi \rightarrow c_{1} \phi+c_{2} \chi
$$

MD evolution: $\quad(\pi, U)_{t} \rightarrow(\pi, U)_{t+\epsilon}$

Theorem:

The SMD process converges to a unique stationary state if $\epsilon<\bar{\epsilon}$, where $\bar{\epsilon}$ depends on the gauge action and the MD integrator

Proof based on
Yet another look at Harris' ergodic theorem for Markov chains (Hairer \& Mattingly '08)

Generation of master fields (cont.)

Example

Wilson gauge action
$4^{\text {th }}$ order OMF integrator (1 step)
$\Rightarrow \quad \bar{\epsilon}=0.06 \times g_{0}^{2}$
Expect systematic errors $\propto \epsilon^{4}$
64^{4} lattice, $a=0.05 \mathrm{fm}$
Run length $=1.8 \times 10^{4}$ [MD time]
\Rightarrow Viable algorithm for large lattices

Calculation of hadron propagators

No of source points $\propto V$
However

- Useful range of distances is a few fm
- Since

$$
|S(x, y)| \propto \exp \left\{-\frac{1}{2} m_{\pi}|x-y|\right\}
$$

may solve Dirac equation in subvolume

- Random-field representation

$$
\begin{aligned}
& \text { action }=\left(D^{\dagger} \phi, D^{\dagger} \phi\right) \\
& \begin{aligned}
S(x, y)=S_{\Lambda}(x, y)+ & \langle D^{\dagger} \underbrace{\chi(x)} \otimes \chi(y)^{\dagger}\rangle_{\phi} \\
& \sim \mathrm{e}^{-\frac{1}{2} m_{\pi} d(x)}
\end{aligned}
\end{aligned}
$$

Conclusions

Master-field simulations of physically large lattices

* Extend the scope of numerical LQCD
* Provide a solution to the topology-freezing problem

Further algorithm R\&D is desirable

* Revisit global operations \& decisions

夫 Implement multilevel strategies \rightarrow parallel talk by Marco Cè

Technical challenges

* Memory requirement ($5 \ldots 100 \mathrm{~TB}$ on 256^{4} lattices)
* Parallel I/O, storage \rightarrow parallel talk by Marcus Hardt

