Stochastic locality and master-field simulations of very large lattices

Martin Lüscher, Theoretical Physics Department, CERN

 35^{th} International Symposium on Lattice Field Theory Granada, June 19-24, 2017

Stochastic locality and master-field simulations of very large lattices

Martin Lüscher, Theoretical Physics Department, CERN

 35^{th} International Symposium on Lattice Field Theory Granada, June 19-24, 2017

Master-field simulations

Example

- Consider QCD on a 256^4 lattice with periodic bc $a = 0.05 \text{ fm} \implies L = 12.8 \text{ fm}$
- Generate 1 representative gauge field
- The translation averages

$$\langle\!\langle \mathcal{O}(x) \rangle\!\rangle = \frac{1}{V} \sum_{z} \mathcal{O}(x+z)$$

of local observables then satisfy

$$\langle\!\langle \mathcal{O}(x) \rangle\!\rangle = \langle \mathcal{O}(x) \rangle + \mathcal{O}(V^{-1/2})$$

Note: $1 \times 256^4 = 256 \times 64^4 \implies$ does not require astronomical resources!

Outline

- Statistical error estimation
- Some illustrative calculations
- Generation of master fields
 - Simulation algorithm
 - ♦ Global operations & decisions
 - ♦ SMD w/o accept-reject step
- Calculation of hadron propagators

Statistical error estimation

The translation average

 $\langle\!\langle \mathcal{O}(x)\rangle\!\rangle$

is a stochastic variable with mean $\langle \mathcal{O}(x) \rangle$ and variance

$$\left\langle \left\{ \left\langle \left\langle \mathcal{O}(x) \right\rangle \right\rangle - \left\langle \mathcal{O}(x) \right\rangle \right\}^2 \right\rangle = \frac{1}{V} \sum_{y} \left\langle \mathcal{O}(y) \mathcal{O}(0) \right\rangle_{\rm c}$$

Statistical error estimation

The translation average

 $\langle\!\langle \mathcal{O}(x) \rangle\!\rangle$

is a stochastic variable with mean $\langle \mathcal{O}(x) \rangle$ and variance

$$\begin{split} \left\langle \{ \langle\!\langle \mathcal{O}(x) \rangle\!\rangle - \langle \mathcal{O}(x) \rangle \}^2 \right\rangle &= \frac{1}{V} \sum_{y} \langle \mathcal{O}(y) \mathcal{O}(0) \rangle_{\rm c} \\ &= \frac{1}{V} \Big\{ \sum_{|y| \le R} \langle \mathcal{O}(y) \mathcal{O}(0) \rangle_{\rm c} + \mathcal{O}(\mathrm{e}^{-mR}) \Big\} \\ &= \frac{1}{V} \Big\{ \sum_{|y| \le R} \langle\!\langle \mathcal{O}(y) \mathcal{O}(0) \rangle\!\rangle_{\rm c} + \mathcal{O}(\mathrm{e}^{-mR}) + \mathcal{O}(V^{-1/2}) \Big\} \end{split}$$

Double sum over y and z done with computational effort $\propto V \ln V$ using the FFT

Statistical error estimation (cont.)

The variance of the average

$$\overline{\mathcal{O}}(x) = \frac{1}{n} \sum_{k=1}^{n} \mathcal{O}(x)|_{U=U_k}$$

over several fields U_1,\ldots,U_n is similarly given by

$$\frac{1}{V} \Big\{ \sum_{|y| \le R} \langle\!\langle \overline{\mathcal{O}}(y) \overline{\mathcal{O}}(0) \rangle\!\rangle_{c} + \dots \Big\}$$

provided the autocorrelation functions of $\mathcal{O}(x)$

- ★ are translation invariant and
- ★ decay rapidly in space

Sample calculations

 ${\rm SU}(3)$ gauge theory 96^4 and 192^4 lattice with $a=0.1~{\rm fm}$

 $E={\rm YM}$ action density at gradient-flow time $t\simeq t_0$

Using 64 nodes @ CESGA (1536 cores, 8 TB)

Sample calculations

 ${\rm SU}(3)$ gauge theory 96^4 and 192^4 lattice with $a=0.1~{\rm fm}$

E = YM action density at gradient-flow time $t \simeq t_0$

Using 64 nodes @ CESGA (1536 cores, 8 TB)

Sample calculations (cont.)

The topological susceptibility

$$\chi_t = \sum_{|y| \le R} \langle \langle q(y)q(0) \rangle \rangle_{c} + O(e^{-mR}) + O(V^{-1/2})$$

may be calculated with 1 master field

• Fixed-topology effects are $\propto V^{-1}$ and thus subleading!

Brower et al. '03, Aoki et al. '07

• The observable here is

$$\mathcal{O}(x) = \sum_{|y| \le R} q(x+y)q(x)$$

Susceptibility at gradient-flow time t_0 1×10⁻⁴ Cè et al. '15 13×96^{4} ٠ $a^4\chi_t$ 1×192^{4} 8×10⁻⁵ 7.85(9)×10⁻⁵ 6×10⁻⁵ 6 8 10 12 16 14 R/a

Sample calculations (cont.)

The topological susceptibility

$$\chi_t = \sum_{|y| \le R} \langle \langle q(y)q(0) \rangle \rangle_{c} + O(e^{-mR}) + O(V^{-1/2})$$

may be calculated with 1 master field

• Fixed-topology effects are $\propto V^{-1}$ and thus subleading!

Brower et al. '03, Aoki et al. '07

• The observable here is

$$\mathcal{O}(x) = \sum_{|y| \le R} q(x+y)q(x)$$

Sample calculations (cont.)

Correlation functions such as

$$C_E(x) = \langle E(x)E(0) \rangle_{\rm c}$$

$$\underset{|x| \to \infty}{\propto} |x|^{-3/2} \mathrm{e}^{-m|x|}$$

can be calculated too provided $|x| \ll L$

The projection to $\vec{P}=0$ however tends to increase the noise

Generation of master fields

Any correct simulation algorithm may in principle be used

In the thermalization phase

- Use space-time reflections to build configurations from smaller lattices
- May study autocorrelations on these lattices

Global operations & decisions must be reconsidered on very large lattices

Solver stopping criterion

 $\|D\psi-\eta\|_2\leq
ho\,\|\eta\|_2,\qquad \|\eta\|_2\propto\sqrt{V}$ (in the HMC algorithm)

Will have to

- Replace $\|\cdot\|_2$ by $\|\cdot\|_\infty$
- Use SAP, local deflation, multigrid, ...

HMC accept-reject step

 $\Delta H \propto \epsilon^p \sqrt{V}, \qquad {\rm loss \ of \ significance} \propto V$

 \Rightarrow numerical precision must increase with V

Other options include

• Localizing the algorithm

Cè, Giusti & Schaefer '16f \rightarrow plenary talk by Leonardo Giusti

• Using the SMD algorithm w/o accept-reject step

Stochastic molecular dynamics (SMD)

Horowitz '85ff, Jansen & Liu '95

Random rotation: $\pi \to c_1 \pi + c_2 v$, $c_1 = e^{-\gamma \epsilon}$, $c_1^2 + c_2^2 = 1$ $\phi \to c_1 \phi + c_2 \chi$

MD evolution: $(\pi, U)_t \to (\pi, U)_{t+\epsilon}$

Stochastic molecular dynamics (SMD)

Horowitz '85ff, Jansen & Liu '95

Random rotation: $\pi \to c_1 \pi + c_2 v$, $c_1 = e^{-\gamma \epsilon}$, $c_1^2 + c_2^2 = 1$ $\phi \to c_1 \phi + c_2 \chi$

MD evolution: $(\pi, U)_t \to (\pi, U)_{t+\epsilon}$

Theorem:

The SMD process converges to a unique stationary state if $\epsilon < \overline{\epsilon}$, where $\overline{\epsilon}$ depends on the gauge action and the MD integrator

Proof based on Yet another look at Harris' ergodic theorem for Markov chains (Hairer & Mattingly '08)

Example

Wilson gauge action

 4^{th} order OMF integrator (1 step)

 \Rightarrow $\bar{\epsilon} = 0.06 \times g_0^2$

Expect systematic errors $\propto \epsilon^4$

 64^4 lattice, $a=0.05~{\rm fm}$

Run length = 1.8×10^4 [MD time]

⇒ Viable algorithm for large lattices

Calculation of hadron propagators

No of source points $\propto V$

However

• Useful range of distances is a few fm

Since

$$|S(x,y)| \propto \exp\left\{-\frac{1}{2}m_{\pi}|x-y|\right\}$$

may solve Dirac equation in subvolume

• Random-field representation

action =
$$(D^{\dagger}\phi, D^{\dagger}\phi)$$

 $S(x, y) = S_{\Lambda}(x, y) + \langle D^{\dagger}\chi(x) \otimes \chi(y)^{\dagger} \rangle_{\phi}$
 $\sim e^{-\frac{1}{2}m_{\pi}d(x)}$

Conclusions

Master-field simulations of physically large lattices

- ★ Extend the scope of numerical LQCD
- ★ Provide a solution to the topology-freezing problem

Further algorithm R&D is desirable

- ★ Revisit global operations & decisions
- \star Implement multilevel strategies \rightarrow parallel talk by Marco Cè

Technical challenges

- ★ Memory requirement $(5...100 \text{ TB on } 256^4 \text{ lattices})$
- ★ Parallel I/O, storage \rightarrow parallel talk by Marcus Hardt