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Master-field simulations

Example

• Consider QCD on a 2564 lattice with periodic bc

a = 0.05 fm ⇒ L = 12.8 fm

• Generate 1 representative gauge field

• The translation averages

〈〈O(x)〉〉 =
1

V

∑
z

O(x+ z)

of local observables then satisfy

〈〈O(x)〉〉 = 〈O(x)〉+ O(V −1/2)

Note: 1× 2564 = 256× 644 ⇒ does not require astronomical resources!
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Outline

• Statistical error estimation

• Some illustrative calculations

• Generation of master fields

� Simulation algorithm

� Global operations & decisions

� SMD w/o accept-reject step

• Calculation of hadron propagators
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Statistical error estimation

The translation average

〈〈O(x)〉〉

is a stochastic variable with mean 〈O(x)〉 and variance〈
{〈〈O(x)〉〉 − 〈O(x)〉}2

〉
=

1

V

∑
y

〈O(y)O(0)〉c
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Statistical error estimation

The translation average

〈〈O(x)〉〉

is a stochastic variable with mean 〈O(x)〉 and variance〈
{〈〈O(x)〉〉 − 〈O(x)〉}2

〉
=

1

V

∑
y

〈O(y)O(0)〉c

=
1

V

{ ∑
|y|≤R

〈O(y)O(0)〉c + O(e−mR)
}

=
1

V

{ ∑
|y|≤R

〈〈O(y)O(0)〉〉c + O(e−mR) + O(V −1/2)
}

Double sum over y and z done with computational effort ∝ V lnV using the FFT
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Statistical error estimation (cont.)

The variance of the average

O(x) =
1

n

n∑
k=1

O(x)|U=Uk

over several fields U1, . . . , Un is similarly given by

1

V

{ ∑
|y|≤R

〈〈O(y)O(0)〉〉c + . . .
}

provided the autocorrelation functions of O(x)

? are translation invariant and

? decay rapidly in space
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Sample calculations

SU(3) gauge theory

964 and 1924 lattice with a = 0.1 fm

E = YM action density at gradient-flow
time t ' t0

Using 64 nodes @ CESGA (1536 cores, 8 TB)
2 4 6 8 10 12 R/a

0.5

1.0

1.5

2.0 no 1

no 2

avg (13 cnfgs)

no 17

964

1924

Relative error of 〈〈E〉〉 [per mille]
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Sample calculations

SU(3) gauge theory

964 and 1924 lattice with a = 0.1 fm

E = YM action density at gradient-flow
time t ' t0

Using 64 nodes @ CESGA (1536 cores, 8 TB)
2 4 6 8 10 12 R/a

0.5

1.0

1.5

2.0 no 1

no 2

avg (13 cnfgs)

no 17

964

1924

Relative error of 〈〈E〉〉 [per mille]

Old 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg 17 18 19

Configuration no

2.78

2.79

2.80

t0/a2

964

1924
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Sample calculations (cont.)

The topological susceptibility

χt =
∑
|y|≤R

〈〈q(y)q(0)〉〉c + O(e−mR) + O(V −1/2)

may be calculated with 1 master field

• Fixed-topology effects are ∝ V −1

and thus subleading!

Brower et al. ’03, Aoki et al. ’07

• The observable here is

O(x) =
∑
|y|≤R

q(x+ y)q(x)

6 8 10 12 14 16
R/a

6×10
−5

8×10
−5

1×10
−4

a4 χ
t

7.85(9)×10−5

Cè et al. ’15

13 × 964

1 × 1924

Susceptibility at gradient-flow time t0
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Sample calculations (cont.)

The topological susceptibility

χt =
∑
|y|≤R

〈〈q(y)q(0)〉〉c + O(e−mR) + O(V −1/2)

may be calculated with 1 master field

• Fixed-topology effects are ∝ V −1

and thus subleading!

Brower et al. ’03, Aoki et al. ’07

• The observable here is

O(x) =
∑
|y|≤R

q(x+ y)q(x)

12 16 20 24 28 32
R/a

3×10
−6

5×10
−6

7×10
−6

a4 χ
t

Chowdhury et al. ’13

4 × 1924

Susceptibility at gradient-flow time t0

5.07(11)×10−6

a = 0.05 fm
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Sample calculations (cont.)

Correlation functions such as

CE(x) = 〈E(x)E(0)〉c

∝
|x|→∞

|x|−3/2e−m|x|

can be calculated too provided |x| � L

1 2 3 4 5 6 7 8
|x| /a

10
-5

10
-4

10
-3

t4C
E
(x)

t = 0.36× t0

am = 0.779(9)

13×964

1×1924

The projection to ~P = 0 however tends

to increase the noise
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Generation of master fields

Any correct simulation algorithm may in principle be used

In the thermalization phase

• Use space-time reflections to build configurations
from smaller lattices

• May study autocorrelations on these lattices
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Generation of master fields (cont.)

Global operations & decisions must be reconsidered on very large lattices

Solver stopping criterion

‖Dψ − η‖2 ≤ ρ ‖η‖2, ‖η‖2 ∝
√
V (in the HMC algorithm)

Will have to

• Replace ‖ · ‖2 by ‖ · ‖∞

• Use SAP, local deflation, multigrid, . . .

10



Generation of master fields (cont.)

HMC accept-reject step

∆H ∝ εp
√
V , loss of significance ∝ V

⇒ numerical precision must increase with V

Other options include

• Localizing the algorithm

Cè, Giusti & Schaefer ’16f → plenary talk by Leonardo Giusti

• Using the SMD algorithm w/o accept-reject step
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Generation of master fields (cont.)

Stochastic molecular dynamics (SMD) Horowitz ’85ff, Jansen & Liu ’95

Random rotation: π → c1π + c2υ, c1 = e−γε, c21 + c22 = 1

φ→ c1φ+ c2χ

MD evolution: (π, U)t → (π, U)t+ε
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Generation of master fields (cont.)

Stochastic molecular dynamics (SMD) Horowitz ’85ff, Jansen & Liu ’95

Random rotation: π → c1π + c2υ, c1 = e−γε, c21 + c22 = 1

φ→ c1φ+ c2χ

MD evolution: (π, U)t → (π, U)t+ε

Theorem:

The SMD process converges to a unique stationary state if ε < ε̄,

where ε̄ depends on the gauge action and the MD integrator

Proof based on

Yet another look at Harris’ ergodic theorem for Markov chains (Hairer & Mattingly ’08)
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Generation of master fields (cont.)

Example

Wilson gauge action

4th order OMF integrator (1 step)

⇒ ε̄ = 0.06× g2
0

Expect systematic errors ∝ ε4

644 lattice, a = 0.05 fm

Run length = 1.8× 104 [MD time]

⇒ Viable algorithm for large lattices

−4×10−5

0

4×10−5 Plaquette

Relative deviation from exact value

−2×10−3

0

2×10−3 〈E 〉 at t = 0.2×t0

0.2 0.3

−1×10−2

0

1×10−2 t0

ǫ
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Calculation of hadron propagators

No of source points ∝ V

However

• Useful range of distances is a few fm

• Since

|S(x, y)| ∝ exp
{
−1

2mπ|x− y|
}

may solve Dirac equation in subvolume

• Random-field representation

action = (D†φ,D†φ)

S(x, y) = SΛ(x, y) +
〈
D†χ(x)︸︷︷︸⊗χ(y)†

〉
φ

∼ e−
1
2
mπd(x)

Λ

x

y

~5 fm
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Conclusions

Master-field simulations of physically large lattices

? Extend the scope of numerical LQCD

? Provide a solution to the topology-freezing problem

Further algorithm R&D is desirable

? Revisit global operations & decisions

? Implement multilevel strategies → parallel talk by Marco Cè

Technical challenges

? Memory requirement (5 . . . 100 TB on 2564 lattices)

? Parallel I/O, storage → parallel talk by Marcus Hardt
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