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1. Introduction

In this note it is shown that the Chern forms are the only local topological fields that

can be constructed from a gauge potential Aa
µ(x) in n dimensions. It is possible to

prove this using the BRS symmetry and the so-called descent equations, which have

been introduced to determine the general structure of the non-abelian gauge anomaly

(see refs. [1–3] for a review and a list of references). The argument presented here

does not make use of this powerful machinery and seems to be somewhat simpler

although the basic ideas are rather similar.

By definition a topological field is a gauge-invariant polynomial q(x) in the gauge

potential Aa
µ(x) and its derivatives such that

∫
dnx δq(x) = 0 (1.1)

for all variations δAa
µ(x) of the gauge field with compact support. A trivial case are

the fields of the form

q(x) = ∂µkµ(x), (1.2)

where kµ(x) is a gauge-invariant local current. One only requires the classification of

all topological fields modulo such terms and thus has a special case of a cohomology

problem in which the gauge symmetry plays an important rôle.
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2. Chern forms

Examples of topological fields in any dimension are the Chern forms

cµ1...µ2r
ta1...arF a1

µ1µ2
(x) . . . F ar

µ2r−1µ2r
(x), (2.1)

where cµ1...µ2r
is a totally anti-symmetric constant tensor and ta1...ar a tensor which

is invariant under the adjoint action of the gauge group G (see appendix A for a

summary of notations). Using the Bianchi identity and the G-invariance of the

expression it is in fact easy to show that these fields are topological in the sense

explained above.

For any fixed dimension and gauge group G there are at most a finite number

of linearly independent Chern forms. To see this first note that there are no to-

tally anti-symmetric tensors cµ1...µ2r
with more than n indices. As far as the other

tensor ta1...ar is concerned, we may assume that it is totally symmetric since it is

contracted with a symmetric expression. The classification of these tensors rests on

the observation that

P (X) = ta1...arXa1 . . . Xar , X = XaT a, (2.2)

defines a homogeneous G-invariant polynomial in the components Xa of the Lie

algebra element X. Conversely any such polynomial corresponds to a unique tensor

ta1...ar with the required properties. Note that the linear space of all invariant

polynomials is closed under multiplication and thus forms an algebra.

The Lie algebra of SU(N) can be taken to be the space of complex anti-hermitean

N × N matrices with vanishing trace. In this case the algebra of invariant polyno-

mials is generated by the polynomials

Tr{X2}, Tr{X3}, . . . , Tr{XN} (2.3)

(see ref. [4], §2.1, for example). Similar results can be established for the other

classical groups and it is then straightforward to produce a complete list of linearly

independent Chern forms.

For illustration let us consider an SU(N) theory in n = 6 dimensions. If we choose

the group generators to be orthonormal,

Tr{T aT b} = − 1

2
δab, (2.4)
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the only symmetric invariant tensor apart from 1 and δab that can contribute is

dabc = 2i Tr{T a(T bT c + T cT b)} (2.5)

and the general linear combination of Chern forms is thus given by

α + βµ1µ2
ǫµ1...µ6

F a
µ3µ4

F a
µ5µ6

+ γǫµ1...µ6
dabcF a

µ1µ2
F b

µ3µ4
F c

µ5µ6
, (2.6)

where α, βµν and γ are arbitrary constant coefficients.

3. Statement of result

As already mentioned we are considering gauge-invariant local fields q(x) that are

polynomials in the gauge potential Aa
µ(x) and its derivatives. Such a field is referred

to as topological if eq. (1.1) holds for any local deformation δAa
µ(x) of the gauge

potential. This is equivalent to the requirement that

∑

|α|≥0

(−1)|α|∂α ∂q(x)

∂[∂αAa
µ(x)]

= 0, (3.1)

where a multi-index notation has been used (as explained in appendix A) and the

derivatives with respect to the gauge field and its derivatives are to be taken in the

obvious way after expanding q(x) in a sum of products of these fields.

The main result of this note is now summarized by

Theorem 3.1. Any topological field q(x) is of the form

q(x) = c(x) + ∂µkµ(x), (3.2)

where c(x) is a sum of Chern forms and kµ(x) a gauge-invariant polynomial in the

gauge potential and its derivatives.

The proof of this theorem is somewhat involved and will be broken up into several

steps. We first reduce the problem to the abelian case and then proceed essentially

along the lines of ref. [5].
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4. Reduction to the abelian case

Any polynomial in the gauge potential and its derivatives can be written in a unique

way as a sum of homogeneous polynomials of increasing degree. If the polynomial

is gauge-invariant, it is then immediately clear that the homogeneous part of lowest

degree is invariant under global gauge transformations,

Aa
µ(x) → (Ad g)abAb

µ(x), g ∈ G, (4.1)

and the “abelian” transformations

Aa
µ(x) → Aa

µ(x) + ∂µωa(x). (4.2)

Local fields that are invariant under these transformations (collectively referred to

as linearized gauge transformations) are easily constructed by forming G-invariant

products of the linearized field tensor

F̌ a
µν = ∂µAa

ν − ∂νAa
µ (4.3)

and its derivatives. In fact, as asserted by the following lemma, all invariant fields

are of this type.

Lemma 4.1. Any local field p̌(x) which is a polynomial in the gauge potential

Aa
µ(x) and its derivatives and which is invariant under the group of linearized gauge

transformations is equal to a G-invariant polynomial in F̌ a
µν(x) and its derivatives.

Proof: Let y be any reference point and define the gauge transformation function

ωa(x) = −

∫ 1

0

dt (x − y)λAa
λ(y + t(x − y)). (4.4)

It is then straightforward to establish the identity

Ãa
µ(x) ≡ Aa

µ(x) + ∂µωa(x) =

∫ 1

0

dt t(x − y)λF̌ a
λµ(y + t(x − y)) (4.5)

and after expanding in a Taylor series around x = y one obtains

Ãa
µ(y) = 0, ∂ν1

. . . ∂νr
Ãa

µ(y) =
1

r + 1

r∑

k=1

∂ν1
. . . ∂̂νk

. . . ∂νr
F̌ a

νkµ(y), (4.6)
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where the notation ∂̂νk
implies that the derivative ∂νk

should be omitted.

The field p̌(x) is a polynomial in the gauge potential and its derivatives which is

invariant under linearized gauge transformations. We may, therefore, replace Aa
µ(x)

by the transformed field (4.5) in this expression and in view of eq. (4.6) it is then

immediately clear that p̌(y) is equal to a G-invariant polynomial in the linearized

field tensor F̌ a
µν(y) and its derivatives.

Some further clarification of the relation between fields that are invariant under

linearized gauge transformations and the gauge-invariant fields is provided by

Lemma 4.2. Any homogeneous polynomial p̌(x) in the gauge potential Aa
µ(x) and

its derivatives, which is invariant under the group of linearized gauge transforma-

tions, coincides with the lowest-degree homogeneous part of a gauge-invariant poly-

nomial p(x).

Proof: Lemma 4.1 implies that p̌(x) is equal to a sum of monomials of the type

ta1...ar∂α1 F̌ a1

µ1ν1
(x) . . . ∂αr F̌ ar

µrνr
(x), (4.7)

where we have again made use of the multi-index notation for partial derivatives

(cf. appendix A). The sum of all these terms is G-invariant, i.e. if we substitute

F̌ a
µν → (Ad g)abF̌ b

µν , g ∈ G, (4.8)

the expression will not change. One cannot conclude from this that the tensors

ta1...ar are G-invariant since there are algebraic dependencies among the derivatives

of the linearized field tensor. From the above one however infers that the tensors

may be replaced by

t̄ a1...ar =

∫

G

dg (Ad g)a1b1 . . . (Ad g)arbr tb1...br , (4.9)

without changing the sum of all terms, dg being the normalized invariant measure

on G (the integral is well-defined since G is compact).

Evidently the new tensors t̄ a1...ar are G-invariant and a gauge-invariant polyno-

mial p(x) may thus be defined by substituting

t̄ a1...arDα1F a1

µ1ν1
(x) . . . DαrF ar

µrνr
(x), (4.10)

for the terms (4.7), where Dαk is the totally symmetrized product of covariant

derivatives corresponding to the multi-index αk. Since the degree r is the same for
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all these terms, it is then obvious that the lowest-degree homogeneous part of p(x)

is equal to p̌(x).

The following theorem may be regarded as the abelian version of theorem 3.1.

We shall prove it in sect. 6 and shall then be able to establish theorem 3.1 with

relatively little effort by setting up a recursion over the degree of the homogeneous

parts of the topological field (sect. 7).

Theorem 4.3. The lowest-order homogeneous part of any topological field q(x) is

of the form

q̌(x) = č(x) + ∂µǩµ(x), (4.11)

where č(x) and ǩµ(x) are the lowest-order homogeneous parts of a sum c(x) of Chern

forms and of a current kµ(x), which is a gauge-invariant polynomial in the gauge

potential Aa
µ(x) and its derivatives.

5. Poincaré lemma

In its widely known form the Poincaré lemma states that a closed k-form on R
n is

exact if k < n. The aim here is to establish another version of the lemma which

applies to partial differential operators acting on differential forms. For the proof of

theorem 4.3 this will turn out to be a most effective tool.

5.1 Differential forms

Following standard notations the general k-form on R
n is given by

f(x) =
1

k!
fµ1...µk

(x)dxµ1
. . .dxµk

, (5.1)

where dx1, . . . ,dxn generate a Grassmann algebra. We shall always take it for

granted that the coefficient functions fµ1...µk
(x) are smooth and denote the space of

all these forms by Ωk. A special case is Ω0 which coincides with the space of smooth

functions f(x) on R
n. For notational convenience it is useful to set Ωk = {0} if

k < 0 or k > n.

The exterior differential operator d acts on k-forms according to

df(x) =
1

k!
∂µfµ1...µk

(x) dxµdxµ1
. . .dxµk

(5.2)
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and thus maps Ωk to Ωk+1. In particular, df(x) = 0 if f(x) is an n-form and the

same is true for any k > n.

The associated divergence operator d∗ : Ωk → Ωk−1 is defined similarly through

d∗f(x) =
1

(k − 1)!
∂µfµµ2...µk

(x)dxµ2
. . .dxµk

(5.3)

if 0 < k ≤ n and d∗f(x) = 0 in all other cases. With respect to the natural scalar

product for tensor fields, d∗ is equal to minus the adjoint of d.

The general form of a differential operator L : Ωl → Ωk is

Lf(x) =
1

k! l!

∑

0≤|α|≤r

dxµ1
. . .dxµk

Lα
µ1...µk,ν1...νl

(x)∂αfν1...νl
(x), (5.4)

where α is a multi-index and r the degree of L. The coefficients Lα
µ1...µk,ν1...νl

may

be assumed to be totally anti-symmetric in the first group µ1, . . . , µk and the second

group ν1, . . . , νl of indices separately. d and d∗ are simple examples of such operators

and it is evident that operator products like dL and Ld are also of this type. More

generally any product of L with partial derivatives ∂σ and the differentials dxσ

results in an operator of the form (5.4) after reordering of the factors.

5.2 Poincaré lemma for differential operators

Since d2 = 0 the equation dL = 0 is satisfied by all operators of the form L = dK.

We would now like to show that these are all solutions if k < n and that K can be

constructed locally from the coefficients of L.

To this end some preparation is still needed. We first establish the following

basic lemma, which allows one to “pull out” a partial derivative from an arbitrary

differential operator.

Lemma 5.1. Let L : Ωl 7→ Ωk be a differential operator as described above and

choose a fixed direction µ. Then there exist two other operators S and R of the

same type, with S having zero degree in ∂µ, such that

L = S + ∂µR. (5.5)

This decomposition is unique and the coefficients of S and R are integer linear

combinations of the coefficients of L and their derivatives.
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Proof: Starting from the general expression for L, eq. (5.4), we have

L =

r∑

q=0

T q∂q
µ, (5.6)

where T q : Ωl 7→ Ωk are differential operators of zero degree in the derivative ∂µ.

Now if we define S and R through

S =
r∑

q=0

(−1)q[∂q
µT q], (5.7)

R =
r∑

q=1

q−1∑

p=0

(−1)p[∂p
µT q]∂q−p−1

µ , (5.8)

it is straightforward to verify that L = S +∂µR. In these equations it is understood

that the derivatives ∂s
µ inside the square brackets apply to the coefficients of T q only

and not also to the form f(x) on which these operators act.

The uniqueness of the decomposition can be established by writing R as a poly-

nomial in ∂µ in the same way as L. After substituting

∂µR = [∂µ, R] + R∂µ, (5.9)

the terms in eq. (5.5) with the same power of ∂µ have to match and this leads to a

simple ladder of equations which determines the coefficients of R.

For any given operator L we can now generate a descending sequence of operators

Lm, Rm and Zm such that

Ln = L, (5.10)

Lm = (Lm−1 + ∂mRm−1) dxm + Zm, m = n, n − 1, . . . , 1. (5.11)

In the recursion step, eq. (5.11), one decomposes Lm in the part proportional to dxm

and the remainder Zm and applies lemma 5.1 to the first term. The sequence is thus

well-defined, with the coefficients of all operators being integer linear combinations

of the coefficients of L and their derivatives. By construction Lm, Rm and Zm are

differential operators mapping l-forms to (k − n + m)-forms which are independent

of dxm+1, dxm+2, . . . ,dxn. Moreover Lm has zero degree in ∂m+1, ∂m+2, . . . , ∂n.

We are now in a position to state the Poincaré lemma for differential operators.

Compared to the classical lemma for differential forms, an important difference is
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that the “potential” K is obtained locally from L. In particular, if the coefficients

of L are gauge-invariant polynomials in the gauge field and its derivatives the same

will be true for the coefficients of K.

Lemma 5.2. If L : Ωl 7→ Ωk is any differential operator satisfying dL = 0 we have

L = δknL0dx1 . . .dxn + dK, (5.12)

K =
n−1∑

m=n−k

(−1)k−n+mRmdxm+2 . . .dxn, (5.13)

where L0 and Rm are obtained by solving the recursion (5.10),(5.11).

Proof: We first show recursively that

dLmdxm+1 . . .dxn = 0. (5.14)

For m = n this is trivially the case. Now if we assume that the equation holds for

some fixed m ≤ n, the recursion (5.11) implies

d̄(Lm−1 + ∂mRm−1)dxm + (d̄ + dxm∂m)Zm = 0, d̄ ≡

m−1∑

µ=1

dxµ∂µ. (5.15)

In particular, the term proportional to dxm has to vanish,

d̄Lm−1 + ∂m

{
d̄Rm−1 + (−1)k−n+mZm

}
= 0, (5.16)

and since Lm−1 has zero degree in ∂m it follows from this and lemma 5.1 that

d̄Lm−1 = 0 and thus dLm−1dxm . . .dxn = 0.

By induction this proves eq. (5.14). Moreover from eq. (5.16) one infers that

d̄Rm−1 + (−1)k−n+mZm = 0 (5.17)

for all m = n, n − 1, . . . , 1. Together with eq. (5.11) this leads to the identity

Lmdxm+1 . . .dxn =
{
Lm−1dxm − (−1)k−n+mdRm−1

}
dxm+1 . . .dxn (5.18)

and eqs. (5.12) and (5.13) are now obtained straightforwardly.

Equivalent forms of the Poincaré lemma can be derived for operators L satisfying

d∗L = 0 or one of the equations Ld = 0 or Ld∗ = 0. In each case a zero degree term

L0 may appear if the form degrees k or l are such that the equation is satisfied for

any L.
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6. Proof of theorem 4.3

The strategy of the proof is to extract powers of the linearized field tensor F̌ a
µν(x)

from q̌(x) in a recursive manner. One is generating tensor fields of increasing rank

along the way and it is crucial to employ a compact notation to keep the argumen-

tation transparent.

6.1 Notational conventions

In this section the term “local field” stands for a polynomial in the gauge potential

Aa
µ(x) and its derivatives which is invariant under abelian gauge transformations

[eq. (4.2)] and which transforms as a tensor under the action (4.1) of G. We also

admit local fields that are p-forms and the linear space of all these fields is denoted

by Λp. The linearized field tensor

F̌ a(x) = 1

2
F̌ a

µν(x)dxµdxν (6.1)

is an element of Λ2, for example, but the gauge field 1-form

Aa(x) = Aa
µ(x)dxµ (6.2)

is not contained in Λ1 since it is not invariant under abelian gauge transformations.

For any field θ ∈ Λp we define an operator θ̂ : Ωk → Ωp−k through

θ̂f(x) =
1

(p − k)!k!
dxµ1

. . .dxµp−k
θµ1...µp−kν1...νk

(x)fν1...νk
(x) (6.3)

for all k in the range 0 ≤ k ≤ p and θ̂f(x) = 0 in all other cases. Evidently θ̂

may be regarded as a differential operator of zero degree and it thus fits into the

general framework of sect. 5. If θ(x) has vanishing divergence, d∗θ(x) = 0, it is

straightforward to show that

d∗θ̂f(x) = (−1)p−k−1θ̂df(x) (6.4)

for all k-forms f(x).

6.2 Recursion

The recursion which will be set up is based on two lemmas which are stated and

proved below. The first lemma provides the starting point of the recursion and the
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second allows one to extract the next power of the linearized field tensor from the

current expression. For clarity the lemmas are formulated in greater generality than

would be necessary for the proof of theorem 4.3. Their application will be discussed

in the next subsection.

Lemma 6.1. Let φ ∈ Λ0 be a given field satisfying
∫

dnx δφ(x) = 0 for any variation

δAa
µ(x) of the gauge potential with compact support. Then there exist local fields

θa ∈ Λ2 and ω ∈ Λ1 such that

d∗θa(x) = 0, (6.5)

φ(x) = c + θ̂aF̌ a(x) + d∗ω(x), (6.6)

where c is a constant.

Proof: Without loss of generality we may assume that φ is a homogeneous polyno-

mial in the gauge potential and its derivatives, viz.

∑

|α|≥0

∂αAa
µ(x)

∂φ(x)

∂[∂αAa
µ(x)]

= hφ(x) (6.7)

for some integer h ≥ 0. If h = 0 the statement made in the lemma is trivial and it

thus remains to consider the case where h is positive.

If we introduce a differential operator La : Ω1 → Ω0 through

Laf(x) =
∑

|α|≥0

∂φ(x)

∂[∂αAa
µ(x)]

∂αfµ(x), (6.8)

it is evident from the above that

hφ(x) = LaAa(x), (6.9)

δφ(x) = LaδAa(x). (6.10)

The second equation and the fact that φ is invariant under abelian gauge transfor-

mations imply Lad = 0. Recalling the Poincaré lemma we may conclude from this

that there exists another operator Ka : Ω2 → Ω0 such that La = Kad. Moreover

since d∗Ka = 0 we have Ka = Ka
0 + d∗Ha where the first term has zero degree. In

other words, there exists a field θa ∈ Λ2 such that Ka
0 = hθ̂a.
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Putting everything together, eqs. (6.9) and (6.10) become

hφ(x) = hθ̂aF̌ a(x) + d∗HaF̌ a(x), (6.11)

δφ(x) = hθ̂adδAa(x) + d∗HadδAa(x). (6.12)

The first of these equations assumes the form (6.6) (with c = 0) if we set

HaF̌ a(x) = hω(x). (6.13)

An important point to note here is that the coefficients of all the operators and fields

that we have introduced above are local fields in the sense defined in subsection 6.1.

In particular, ω(x) is invariant under linearized gauge transformations.

We finally need to show that d∗θa(x) = 0. To this end we integrate eq. (6.12)

over R
n and note that the left-hand side and the second term on the other side do

not contribute to the integral. This leads to the identity

∫
dnx θ̂adδAa(x) = 0 (6.14)

and after performing a partial integration one concludes from this that θa(x) has to

have vanishing divergence.

Lemma 6.2. Let φa1...ar ∈ Λp, p ≥ 1, be a given field satisfying d∗φa1...ar (x) = 0.

Then there exist local fields θa1...ar+1 ∈ Λp+2 and ωa1...ar ∈ Λp+1 such that

d∗θa1...ar+1(x) = 0, (6.15)

φa1...ar (x) = ca1...ar + θ̂a1...ar+1 F̌ ar+1(x) + d∗ωa1...ar (x), (6.16)

where ca1...ar is a constant G-invariant p-form.

Proof: For simplicity we omit the indices a1 . . . ar in the following since their pres-

ence is irrelevant for our argumentation and would not interfere in any way. As in

the proof of lemma 6.1 it suffices to consider the case where φ(x) is a homogeneous

polynomial in the gauge potential and its derivatives of degree h > 0. If we define

the operator La : Ω1 → Ωp as before [eq. (6.8)], it is then immediately clear that

eqs. (6.9) and (6.10) remain valid in the present context.

From the second equation and the properties of φ it now follows that

d∗La = Lad = 0. (6.17)
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Applying the Poincaré lemma two times, La may thus be decomposed according to

La = d∗Ka, Ka : Ω1 → Ωp+1, (6.18)

Kad = d∗Ha, Ha : Ω0 → Ωp+2. (6.19)

Since Had = 0 another application of the lemma yields

Ha = Ha
0 + Rad, Ra : Ω1 → Ωp+2, (6.20)

where Ha
0 has zero degree, i.e. there exists a field θa ∈ Λp+2 such that Ha

0 = −hθ̂a.

Moreover we may assume that Ra = 0 since this term can be removed by replacing

Ka through Ka + d∗Ra.

If we apply eq. (6.19) to a constant 0-form, the left-hand side vanishes and the

other side is proportional to d∗θa(x). This shows that d∗θa(x) = 0. In particular,

eq. (6.4) applies and eq. (6.19) assumes the form

Kad = (−1)phθ̂ad. (6.21)

Invoking the Poincaré lemma once more, this implies

Ka = (−1)phθ̂a + Qad, Qa : Ω2 → Ωp+1. (6.22)

The operator La is thus given by

La = hθ̂ad + d∗Qad, (6.23)

where we have again made use of eq. (6.4). Together with eq. (6.9) this proves

eq. (6.16) if we set QaF̌ a(x) = hω(x) and c = 0.

6.3 Final steps

We now complete the proof of theorem 4.3 by combining the lemmas established

above. First note that

q̌(x) = c + θ̂aF̌ a(x) + d∗ω(x), (6.24)

since q(x) is a topological field and q̌(x) thus fulfills the premises of lemma 6.1. The

fields θa(x) and ω(x) are the first elements of a sequence of fields

θa1...ar ∈ Λ2r, ωa1...ar−1 ∈ Λ2r−1, (6.25)

d∗θa1...ar (x) = 0, r ≥ 1, (6.26)
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which may be generated by repeated application of lemma 6.2. By construction we

have

θa1...ar (x) = ca1...ar + θ̂a1...ar+1 F̌ ar+1(x) + d∗ωa1...ar (x), (6.27)

where ca1...ar are constant G-invariant p-forms. Moreover since q̌(x) is a homogenous

polynomials of degree h ≥ 0 in the gauge potential and its derivatives, we may

assume that θa1...ar (x) and ωa1...ar (x) are also homogenous with degree h − r. In

particular, the constants ca1...ar have to be equal to zero except possibly for r = h.

Starting from eq. (6.24) we can now eliminate the fields θa1...ar (x) recursively using

eq. (6.27). The recursion terminates if r > h or 2r > n, because θa1...ar(x) = 0 for

such values of r. In each step one generates a term of the form

∂µωa1...ar

µµ1...µ2r
(x)F̌ a1

µ1µ2
(x) . . . F̌ a1

µ2r−1µ2r
(x) (6.28)

and if r = h also a second term proportional to

ca1...ar

µ1...µ2r
F̌ a1

µ1µ2
(x) . . . F̌ a1

µ2r−1µ2r
(x). (6.29)

Evidently the latter is a equal to the lowest-order homogeneous part of a sum of

Chern forms. The other term may be rewritten in the form

∂µ

{
ωa1...ar

µµ1...µ2r
(x)F̌ a1

µ1µ2
(x) . . . F̌ a1

µ2r−1µ2r
(x)

}
(6.30)

as a result of the Bianchi identity and the fact that the components of ωa1...ar (x)

are totally anti-symmetric in the Lorentz indices. The sum of all these terms is

thus equal to the divergence of a current ǩµ(x) which is homogenous of degree h

in the gauge potential and its derivatives. Moreover, since it ǩµ(x) is invariant

under linearized gauge transformations, lemma 4.2 applies and one concludes that

it coincides with the lowest-order homogenous part of a current kµ(x), which is a

gauge-invariant polynomial in the gauge potential Aa
µ(x) and its derivatives. This

proves that q̌(x) is of the form (4.11) and we have thus established the theorem.
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7. Proof of the main theorem

We first note that polynomials in the gauge potential Aa
µ(x) and its derivatives can

classified according to their scale dimension, where the potential and each deriva-

tive are assigned dimension 1. This corresponds to the scaling behaviour under

dilatations

Aa
µ(x) → λAa

µ(λx), λ > 0, (7.1)

and it is evident that any given topological field q(x) decomposes into a sum of

topological fields with definite scale dimension.

Suppose now that q(x) is a topological field with scale dimension ν and let q̌(x) be

its lowest-order homogenous part as discussed in sect. 4. The general form of q̌(x)

is given theorem 4.3, where c(x) and kµ(x) may be assumed to have scale dimension

ν and ν − 1 respectively. It follows from this that

q1(x) = q(x) − c(x) − ∂µkµ(x) (7.2)

is a topological field with dimension ν and lowest-order homogenous part q̌1(x) with

degree strictly greater than the degree of q̌(x).

Proceeding in this way a sequence q1(x), q2(x), . . . of topological fields is thus

obtained. The sequence ends when the last field that has been generated vanishes.

This has to happen after a finite number of iterations, because the generated fields

have the same scale dimension while the degree of their lowest-order homogenous

parts is increasing. Once the recursion terminates the sequence of equations can be

traced back and it is then obvious that q(x) is equal to a sum of Chern forms plus

a divergence term as asserted by theorem 3.1.

Appendix A

A.1 Indices

Throughout these notes the underlying space-time manifold is R
n and Lorentz in-

dices µ, ν, . . . accordingly run from 1 to n. Since the metric is euclidean it does not

matter in which position these indices appear. Multi-indices α = (α1, . . . , αn) are

used to label multiple partial derivatives

∂α = (∂1)
α1 . . . (∂n)αn , αk ∈ {0, 1, 2, . . .}, (A.1)
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with respect to the coordinates x1, . . . , xn. For such indices the notations

|α| = α1 + . . . + αn, α! = α1! . . . αn! (A.2)

apply. Vectors in the adjoint representation of the gauge group are labelled by Latin

indices a, b, . . . from the beginning of the alphabet. Repeated indices are always

summed over unless stated otherwise. The totally anti-symmetric tensor ǫµ1...µn
is

normalized such that ǫ12...n = 1 and δµν denotes the Kronecker symbol.

A.2 Gauge group

We consider a compact connected Lie group G with Lie algebra g. With respect to

a basis T a of g, the structure constants fabc are defined by

[T a, T b] = fabcT c. (A.3)

The basis may always be chosen such that fabc is real and totally anti-symmetric

under permutations of the indices.

The representation space of the adjoint representation of g is the Lie algebra itself,

i.e. the elements X of g are represented by linear transformations

Ad X : g 7→ g. (A.4)

Explicitly AdX is defined through

AdX(Y ) = [X, Y ] for all Y ∈ g. (A.5)

The transformation of the basis elements T a is thus given by

Ad X(T b) = T a(AdX)ab, (Ad X)ab = −fabcXc, (A.6)

where X = XaT a.

The adjoint representation of the Lie algebra generates a representation of the

group G which is also denoted by Ad . A given tensor ta1...ar of rank r is referred

to as G-invariant if

ta1...ar = (Ad g)a1b1 . . . (Ad g)arbr tb1...br (A.7)

for all group elements g.
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A.3 Fields

Gauge potentials are vector fields Aµ(x), x ∈ R
n, with values in the Lie algebra g.

In terms of a basis T a of g they are given by

Aµ(x) = Aa
µ(x)T a (A.8)

with real components Aa
µ(x). The field strength tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (A.9)

is also Lie algebra valued and can thus be expanded in components in the same

way as the gauge potential. It is always assumed that the fields which are being

considered are infinitely often differentiable with respect to x.

Under an infinitesimal gauge transformation ω(x) = ωa(x)T a, gauge potentials

transforms according to

δAµ = Dµω, Dµ = ∂µ + AdAµ. (A.10)

The transformation law for the field tensor thus reads

δFµν = [Fµν , ω] (A.11)

and the same formula applies to the covariant derivatives Dρ1
. . . Dρk

Fµν .
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