Lattice fermions in 441 dimensions (addendum)

Martin Liischer March 2000

This is an extension of ref. [1], covering the case of non-zero physical fermion masses.
Moreover some of the basic results are cast into a new form which remains valid in
a larger range of mg than previously allowed. The notation is taken over completely
and we initially assume that mg satisfies the bounds (4.3). Only t-independent gauge
fields are considered.

11. Massive fermions

As for any other lattice Dirac operator satisfying the Ginsparg-Wilson relation, the
natural definition of the massive Dirac operator is

Dy, = (1= $am)D +m, (11.1)

where m is the bare mass parameter. In principle m can take any value, also negative
ones, but in the following discussion we shall assume that 0 < am < 2 for reasons
to become clear later.

The massive propagator can be obtained from the functional integral in 4+1 di-
mensions by adding the term

a4z Lamq(z)q(z) (11.2)

to the fermion action (6.3), the boundary fields ¢(x) and g(x) being defined through
egs. (6.1),(6.2). Explicitly this term reads

at Z sam {(as, ) Py(T — ag, z) + (T — ay, x) P_y(ay, x) } (11.3)
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which shows that it is like a hopping term connecting the last time slice of the lattice
with the first. The total action is thus given by

Sp=aa® > Y Pt ) Dpib(t, ), (11.4)

o<t<T =
Db (t) = D(t) + Qﬂ {8t.0, PLao(T — ag) + Gp7—a, P_tb(ar)} - (11.5)

Note that ®,, acts on the same space of functions as ©, with the same boundary
conditions.
It is now evident that
0 _ B _
a7, W 2)Y(s,y)) = —3a° > (W(t,2)a(2)) (a(2)¥(s,y)). (11.6)

The inverse of the two-point function (g(x)g(y)), when interpreted as integral oper-
ator in four dimensions, is hence linear in m. Taking eq. (6.11) into account, this

implies [2]
2 — CLDN
q\Y)) = —F—— 11.7
(q(z)a(y)) Doy (11.7)
Dy = (1= 2am)Dy +m. (11.8)
An interesting special case is
(@(@)d(Y))|ymes = 1 — 3aDn (11.9)

which shows that the action of Dy on any given source field can be computed by
setting am = 2. In general we have

2
aDm,N

(1= 3am){g(=)a(y)) = -1+ (11.10)

and one thus obtains the massive propagator up to a normalization constant.
The determinant of ©,, may be worked out similarly. First note that

11410 = 40 3 {a(2)a(e) (1.11)
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From eq. (11.7) one infers
1.5 — 1 0
—3a°> (q(z)q(z)) = Tr{(1 - $aDy)/Dmn} = 5-Indet Dy (1112)

When combined with eq. (10.1) this yields
det D, = (1/a;)™ det{1aD,, n}det{1 + (RR")N}(det B;)". (11.13)

All the mass dependence of det ®,, thus arises from the factor det Dy, n.

12. Alternative expression for Dy

We now rewrite Dy in a different form which allows one to extend the range of my
without running into singularities. To this end we introduce the operators

Ky =1+ya M2+ aM)™ " (12.1)

The inverse of 2 + a; M is well-defined for a;my < 2, because the spectrum of this
operator is then strictly on the right of the imaginary axis. From the definition
(12.1) it is immediate that

K, +K_=1, (Ki)T =Ky, (12.2)

In particular, K, and K_ can be diagonalized simultaneously and have only real
eigenvalues.
Next we note that

K+:<B;+ ?)(2+atM)_1, K_:<_lcT ;_)(QJratM)_l. (12.3)

Recalling eq. (7.1) it is then straighforward to show that
RRI =K _/K,. (12.4)
Note that K is guaranteed to be invertible if B is, since

det K, = det By /det(2 + a;M). (12.5)
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Fig. 2. The eigenvalues A of aD,, n are contained in a region bounded by a circle
in the right half-plane. The radius of the circle decreases linearly from 1 to 0 in the
range 0 < am < 2.

In particular, the representation (12.4) is valid in the parameter range (4.3).
The operator Dy may now be rewritten in the form

KY —KY

Dy=1 —_— .

(12.6)

The important point here is that this expression is manifestly analytic in mg in the
extended range

mg > 0, armg < 2, amg < 2. (12.7)
The right-hand side of
det ®,,, = (1/a;)™ det{1aD,, n}det{KY + KV} det(2 + a;M)™ (12.8)

thus has to be equal to det®,,, everywhere in this range.

From eq. (12.6) one also infers that |aDy — 1| < 1. The spectrum of aD,, n
is hence confined to the circular region shown in fig. 2. In particular, zero-modes
are excluded for m > 0. Taking eq. (12.8) into account, one concludes from this
that ©,,, is invertible in the extended range of parameters. Eqgs. (11.7)—(11.10) thus
remain valid in this range, provided the new expression is substituted for Dy.

For m < 0 it can happen that D,,, 5 has a zero-mode. Since D, is singular under
these conditions, it is clear that this leads to various technical complications that
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should better be avoided. This is a limitation of the domain-wall fermion approach.
D, itself is well-defined and invertible also for m < 0.

13. Large N limit revisited

The limit N — oo can easily be taken at all points in the range (12.7) by noting
that the simultaneous eigenvalues of K are of the form %(1 +v) withv e R. As a
result one obtains

aD = lim aDy =1+47s¢(Ky — K_), (13.1)

N—oo

which is equivalent to
aD =1— A(ATA)~1/2, (13.2)
A=—a;M(2+a; M) . (13.3)

Compared to Neuberger’s operator, the only difference thus consists in the factor
(2 + a;M)~! in the definition of A. Since this factor is local, bounded and has its
spectrum strictly on the right of the imaginary axis, the locality of D can again be
proved for all gauge fields with plaquette loops close to 1.

The large N limit is approached with an exponential rate

oV (13.4)
1-Ja

where o is the smallest eigenvalue of ATA. The corresponding generalized eigenvalue
equation reads

alMTMy = a(2 + a;M)T(2 + a, M)y (13.5)

This is a well-posed problem in the parameter range (12.7), since the operator on
the right-hand side is guaranteed to be strictly positive.



14. Accelerating the convergence at large N

So far we have assumed that M is of the form (4.2), but the final results quoted
above [egs. (12.6),(12.8),(13.1)—(13.5) with K4 given by eq. (12.1)] are actually valid
for any operator M satisfying

MY =5 M~s, det(2 + a; M) # 0. (14.1)

This can be shown by going back to the general formulae for the determinant and
the Green function of ® given in sects. 2,3 and by working them out directly in
terms of K. The solution matrix S(t), for example, is given by

S(t) =1+ Pra,M) Y K_/K /%" 1p_ (14.2)

and similar expressions are obtained for the other fundamental solutions (as before
one first considers the case where B and thus K1 are non-singular).

One can make use of this fact to accelerate the convergence at large N by replacing
a¢sM through an operator of the form

a M = a M — Y Xywi @w]7s. (14.3)
k,l=1

The idea is to choose the vectors wy and the hermitian matrix X3; so that the small-
est eigenvalues A of v5A are replaced by larger values A, while all other eigenvalues
are unchanged. In this way the exponent w characterizing the approach to the large
N limit can be significantly increased with a modest computational effort. Evidently
all this is very similar to the acceleration method of ref. [3,4] previously employed
in the case of Neuberger’s operator.

So let us suppose that

’Y5A1)k = )\k’l)k, k= 1, PPN (’Uk,?}l) = 6kl7 (14.4)
where r > 1 is any fixed integer. If we set
wg = (2 + a M)y, (14.5)

(X_l)kl = 25“(5% — )\k)_l + (Uk, (2 + atM)'y5vl), (14.6)
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a short calculation yields

A= —atM(Q—G—atM)*l = A—I—Z(j\k — A\k) Y50k ®v};. (14.7)
k=1

The operator 75121 has thus the same eigenvectors as 5 A, with the same eigenvalues
except for those associated with the eigenvectors vy which are equal to ;\k instead
of )\k-

It follows from this that the corresponding operators Dy and Dy converge to the
same Dirac operator D if

eAr) =e(\p) forall k=1,...,rm (14.8)

A possible choice of Ay is thus

~

Ak = €(Ag), (14.9)
which implies instantaneous convergence of Dy on the subspace spanned by the
eigenvectors vi. One should however make sure that the matrix on the right-hand

side of eq. (14.6) is well-conditioned. There is enough flexibility in the choice of Ay
to achieve this without giving up the improved convergence properties of Dy .
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