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1. Introduction

In this note we consider Dirac fermions on a hyper-cubic lattice in 4+1 dimensions

with Schrödinger functional boundary conditions. The aim is to derive some general

formulae for the fermion determinant and the propagator, which allow one to study

the reduction to an effective chiral theory in 4 dimensions in a mathematically

controlled way. Eventually one would like to deduce the expression for the chiral

determinant obtained in ref. [1] from the fermion determinant in 4+1 dimensions.

The lattice Dirac operator is assumed to be of the form

D = 1
2 {γ5(∂

∗
t + ∂t) − at∂

∗
t∂t} + M(t), (1.1)

where t and at denote the coordinate and the lattice spacing in the fifth direction.

The possible values of t are

t = 0, at, 2at, . . . , T (1.2)

and the forward and backward difference operators ∂t and ∂∗t are defined as usual.

We do not make any assumptions on the operator M(t) at this point except that

B(t) = 1 + 1
2at [M(t) + γ5M(t)γ5] (1.3)

should be invertible. Later it will be set to the 4-dimensional massive Dirac operator

with a t-dependent gauge field.

The dynamical degrees of freedom of the fermion field ψ(t, x) reside on the lattice

sites with 0 < t < T . At the boundaries only half of the Dirac components are
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defined and these are fixed through

P+ψ(0, x) = P−ψ(T, x) = 0, P± = 1
2 (1 ± γ5). (1.4)

For brevity we shall often omit to indicate the position on the 4-dimensional lattice,

which is, incidentally, always assumed to be finite with suitable boundary conditions.

With these specifications the action of the Dirac operator,

Dψ(t) = (1/at) {−P−ψ(t + at) − P+ψ(t − at) + [1 + atM(t)] ψ(t)} , (1.5)

is well-defined for all t in the range 0 < t < T and D may hence be considered to be

linear mapping from the space of fermion fields into itself. Note that the dimension

dF of this space is finite. With respect to any particular basis the Dirac operator is,

therefore, just a complex dF × dF matrix.

2. Determinant of D

The determinant of ordinary differential operators may be expressed through a par-

ticular solution of the associated homogeneous differential equation. This is a well-

known fact, which has previously been exploited when discussing the quantum fluc-

tuations around classical field configurations, for example [2]. Essentially the same

remark applies to ordinary difference operators and the determinant of D can thus

be computed along these lines.

The general solution of the homogeneous problem

Dψ(t) = 0, t > 0, P+ψ(0) = 0, (2.1)

may be obtained straightforwardly by rewriting eq. (1.5) in the form

P+ψ(t) = B(t)−1P+ {ψ(t − at) − atM(t)P−ψ(t)} , (2.2)

P−ψ(t + at) = B(t)P−ψ(t) + P−atM(t)P+ψ(t). (2.3)

For given initial value P−ψ(at), the first of these equations determines P+ψ(at) and

the second may then be applied to compute P−ψ(2at). Proceeding in this way one
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generates the complete solution which is, therefore, uniquely determined. Since the

solution depends linearly on the initial data, we have

ψ(t) = S(t)P−ψ(at), S(t)P− = S(t), (2.4)

where S(t) is an operator acting on fermion fields in four dimensions.

The determinant of the Dirac operator is now given by

detD = (1/at)
dF det

{
P+ + P−S(T )

} T−at∏

s=at

det
{
P− + B(s)P+

}
. (2.5)

It is not difficult to prove this formula, but the argument is somewhat lengthy and

is therefore deferred to appendix A.

3. Propagator

The Green function G(t, s) associated with the Dirac operator D is defined through

DG(t, s) = a−1
t δts, 0 < t, s < T, (3.1)

where fermion boundary conditions

P+G(0, s) = P−G(T, s) = 0 (3.2)

are assumed. G(t, s) is the kernel in position space of the inverse D
−1 of the Dirac

operator. In particular, it is uniquely determined through eqs. (3.1) and (3.2) if D

has no zero-modes.

As in the case of the determinant of D, the Green function can be expressed

through the solutions of the homogeneous Dirac equation. Since the Dirac operator

is not hermitean, one also needs to consider the operator

D̃ = 1
2 {−γ5(∂

∗
t + ∂t) − at∂

∗
t∂t} + M(t)† (3.3)

to be able to describe the s-dependence of G(t, s). One then has two independent so-

lutions per operator (table 1). Similarly to S(t) they can all be constructed through

a two-step recursion, starting from the initial values specified in the table.
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Table 1. Fundamental solutions of the Dirac equation

DS(t) = 0 (t > 0), P+S(0) = 0, P−S(at) = P−

D̃S̃(t) = 0 (t > 0), P−S̃(0) = 0, P+S̃(at) = P+

DS ′(t) = 0 (t < T ), P−S ′(T ) = 0, P+S ′(T − at) = P+

D̃S̃ ′(t) = 0 (t < T ), P+S̃ ′(T ) = 0, P−S̃ ′(T − at) = P−

An important fact which we shall make use of is that the Wronskian

W (χ, ψ) = χ(t + at)
†P+ψ(t) − χ(t)†P−ψ(t + at) (3.4)

of any two fermion fields satisfying

D̃χ(t) = 0, Dψ(t) = 0, (3.5)

is independent of t. This can be shown straightforwardly by inserting the Dirac

equations in the definition (3.4). Incidentally, when only the P+ or P− projected

equations are inserted, one finds that the Wronskian may also be written in the form

W (χ, ψ) = χ(t)†γ5B(t)ψ(t). (3.6)

The Wronskians of the fundamental solutions listed in table 1 are given by

W (S̃, S) = W (S̃ ′, S ′) = 0, (3.7)

W (S̃, S ′) = P+S ′(0), (3.8)

W (S̃ ′, S) = −P−S(T ), (3.9)

as may easily be shown by evaluating eq. (3.4) at the boundaries of the lattice.

To construct the Green function, we start from the ansatz

G(t, s) =
t>s

S ′(t)X ′(s), P+X ′(s) = X ′(s), (3.10)
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G(t, s) =
t<s

S(t)X(t), P−X(s) = X(s), (3.11)

G(s, s) = P+S ′(s)X ′(s) + P−S(s)X(s), (3.12)

where X(s) and X ′(s) are to be determined. This ansatz satisfies the boundary

conditions (3.2) and also the Dirac equation (3.1) for all t 6= s. The equation should

also hold at t = s which will be the case if and only if

γ5B(s) {S ′(s)X ′(s) − S(s)X(s)} = 1. (3.13)

Using the Wronskian, eqs. (3.6)–(3.9), this condition can easily be solved for X(s)

and X ′(s) and one then ends up with the result

G(t, s) =
t>s

S ′(t) {P− + P+S ′(0)}−1
S̃(s)†, (3.14)

G(t, s) =
t<s

S(t) {P+ + P−S(T )}−1
S̃ ′(s)†, (3.15)

G(s, s) = P+S ′(s) {P− + P+S ′(0)}−1
S̃(s)†

+ P−S(s) {P+ + P−S(T )}−1
S̃ ′(s)†. (3.16)

Note that the inverse of the operators in the curly brackets exists if D has no zero

modes, i.e. if the Green function is well-defined.

4. Standard choice of M(t)

On a 4-dimensional lattice with lattice spacing a, the Wilson-Dirac operator is de-

fined as usual through

Dw = 1
2 {γµ(∇∗

µ + ∇µ) − a∇∗
µ∇µ} , (4.1)

with ∇µ and ∇∗
µ being the gauge-covariant forward and backward difference opera-

tors. The conventional choice for M(t) is

M(t) = Dw − m0, (4.2)
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where it is understood that a t-dependent gauge field is inserted in the covariant

derivatives. The mass parameter m0 has to be such that

m0 > 0, atm0 < 1, am0 < 2, (4.3)

in order to obtain the desired behaviour of the theory in 4+1 dimensions. Without

further notice only this choice of M(t) will be considered in the following and we

shall always take it for granted that the inequalities (4.3) are satisfied.

In a chiral representation of the Dirac matrices (appendix B) we have

B(t) =

(
B+ 0

0 B−

)
, 1 + atM(t) =

(
B+ C

−C† B−

)
, (4.4)

the block operators being given by

B± = 1 − atm0 − 1
2ata∇∗

µ∇µ, (4.5)

C = 1
2ateµ(∇∗

µ + ∇µ) (4.6)

Note that B(t) is bounded from below by 1 − atm0 and is thus strictly positive. In

particular, B(t) is invertible for any choice of the gauge field.

5. Determinant and propagator for constant fields

If M(t) does not depend on t, the fundamental solutions of the Dirac equation

defined in table 1 can be worked out analytically. The key observation is that the

two equations

P−Dψ(t) = 0, P+Dψ(t + at) = 0, (5.1)

are equivalent to

B1/2ψ(t + at) = R†R B1/2ψ(t), (5.2)

where the operator R is given by

R =

(
1 0

−C† 1

) (
(B+)−1/2 0

0 (B−)1/2

)
. (5.3)

6



An important point to note is that the equivalence holds at any specified value of t.

This allows one to easily control the situation close to the boundaries of the lattice

and with little additional work one finds that

S(t) = B−1/2(R†R)t/atB−1/2P−, (5.4)

S ′(t) = B−1/2(R†R)(t−T )/atB−1/2P+, (5.5)

S̃(t) = γ5S
′(T − t)γ5, S̃ ′ = γ5S(T − t)γ5. (5.6)

For the determinant of D the formula

detD = (1/at)
dF det

{
P+ + (R†R)T/atP−

}
(det B+)T/at−1(det B−)−1 (5.7)

is thus obtained (the last two factors could be combined into one since the determi-

nants of B+ and B− coincide).

When eqs. (5.4)–(5.6) are inserted in the general expression (3.14)–(3.16) for the

Green function G(t, s), a few simple manipulations lead to the result

G(t, s) =
t>s

B−1/2(R†R)(t−T )/atP+

×
{
(R†R)−T/atP+ + P−

}−1
(R†R)−s/atB−1/2γ5, (5.8)

G(t, s) =
t<s

−B−1/2(R†R)t/atP−

×
{
(R†R)−T/atP+ + P−

}−1
(R†R)−s/atB−1/2γ5, (5.9)

G(s, s) = B−1/2
{
P+(R†R)(s−T )/atP+ − P−(R†R)s/atP−

}

×
{
(R†R)−T/atP+ + P−

}−1
(R†R)−s/atB−1/2γ5. (5.10)

These expressions completely agree with the formulae obtained by Giulia [4]. Note

that the inverse of the operator in the curly bracket on the second lines in these

formulae is well-defined, because R†R is invertible and strictly positive. This shows

incidentally that D has no zero-modes if the gauge field is t-independent.
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6. Boundary field propagator

We now proceed to derive a result of Kikukawa and Noguchi [5] for the two-point

function of the boundary fermion fields. The gauge field is again chosen to be inde-

pendent of t and the boundary fields are defined through

q(x) = P−ψ(at, x) + P+ψ(T − at, x), (6.1)

q̄(x) = ψ(at, x)P+ + ψ(T − at, x)P−. (6.2)

Note incidentally that up to contact terms this definition coincides with the com-

binations ζ(x) + ζ ′(x) and ζ̄(x) + ζ̄ ′(x) of the boundary fields considered in the

framework of the Schrödinger functional (see ref. [6], sect. 4, for example).

If we set up the functional integral for fermions in 4+1 dimensions in the obvious

way, with fermion action

SF = ata
4

∑

0<t<T

∑

x

ψ(t, x)Dψ(t, x), (6.3)

the basic two-point function is given by

〈ψ(t, x)ψ(s, y)〉 = G(t, x; s, y). (6.4)

For the boundary fields we thus obtain

〈q(x)q̄(y)〉 = P−G(at, at)P+ + P+G(T − at, T − at)P−

+ P−G(at, T − at)P− + P+G(T − at, at)P+, (6.5)

where, for notational simplicity, the coordinates x and y have been suppressed on

the right-hand side. Inserting eqs. (5.8)–(5.10) and using the identities

RP− = P−B1/2, R†P+ = P+B−1/2, (6.6)

this evaluates to

〈q(x)q̄(y)〉 = B1/2
{
(R†R)−T/atP+ − P−

}−1

×
{
(R†R)−1P+ − (R†R)1−T/atP−

}
B−1/2. (6.7)
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Applying the relation

(R†R)n = R†(RR†)n−1R (6.8)

and eq. (6.6) again one then ends up with the expression

〈q(x)q̄(y)〉 =
{
P+ − (RR†)NP−

}−1{
(RR†)NP+ − P−

}
(6.9)

where N = T/at − 1. If we introduce an operator DN through

aDN = 1 − γ5
(RR†)N − 1

(RR†)N + 1
, (6.10)

the result of Kikukawa and Noguchi [5],

〈q(x)q̄(y)〉 = −1 +
2

aDN
, (6.11)

is thus obtained. Note that it is RR† and not R†R which appears in eq. (6.10).

7. Properties of RR† and the limit N → ∞

The operator

RR† =

(
1 0

−C† 1

) (
B−1

+ 0

0 B−

) (
1 −C

0 1

)
(7.1)

has all its eigenvalues in a compact range on the positive real axis. In particular,

zero-modes are excluded since

detRR† = 1. (7.2)

Another important identity is

RR† + (RR†)−1 = 2 + a2
t M

†B−1M. (7.3)

It follows from this that eigenvalues equal to 1 will occur if and only if M has zero-

modes. As discussed in ref. [7] this is rarely the case. Moreover a lower bound
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on M†M can be established rigorously if the gauge field has plaquette loops U(p)

satisfying

‖1 − U(p)‖ < ǫ (7.4)

for all plaquettes p and some sufficiently small constant ǫ (details are given in ref. [7]).

Eq. (7.3) then implies that the spectrum of RR† has a gap around 1.

It is now evident that DN has a limit D at large N given by

aD = 1 − γ5{P̂+ − P̂−}, (7.5)

where P̂± are the projectors to the subspaces of eigenvectors of RR† with eigenvalues

greater and smaller than 1. This equation may also be written in the form

P̂± = 1
2 (1 ± γ̂5), γ̂5 = γ5(1 − aD), (7.6)

and it is then not difficult to show that D satisfies the Ginsparg-Wilson relation

γ5D + Dγ5 = aDγ5D. (7.7)

In the limit N → ∞ the two-point function of the boundary fields thus yields the

inverse of D up to a constant additive term.

As an aside we note that DN converges to D exponentially fast. The leading error

term is proportional to

{
1 + 1

2δ +
√

δ + 1
4δ2

}−N

(7.8)

with δ being the lowest eigenvalue of the operator

∆ = a2
t M

†B−1M. (7.9)

The gap δ can be computed numerically by applying the Ritz functional method

of refs. [8,9]. An important technical point to note here is that the spectrum of ∆

coincides with the spectrum of the generalized eigenvalue problem

a2
t MM†z = λBz. (7.10)

The appropriate Ritz functional to consider is thus

µ(z) = (z, a2
t MM†z)/(z, Bz) (7.11)
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and the minimization then proceeds essentially as described in the papers quoted

above. Evidently the advantage of this formulation is that one is concerned with

simple difference operators only. In particular, the inverse of B is not required.

8. Locality of D

Since B is bounded from below by 1−atm0, the techniques of ref. [7] may be applied

to show that B−1 is a local operator with exponentially decaying tails. The same is

hence also true for RR† and (RR†)−1.

To establish the locality of D we note that

aD = 1 − A(A†A)−1/2, (8.1)

a possible choice for A being

A = 1
2γ5

{
RR† − (RR†)−1

}
. (8.2)

The square root in eq. (8.1) is a potential source of non-locality, but since

A†A = ∆ + 1
4∆2, (8.3)

the operator is in fact local (with exponentially decaying tails) as long as the spec-

trum of ∆ is separated from zero by positive gap δ [7]. Evidently all this is very

similar to the situation encountered in the case of Neuberger’s operator which coin-

cides with D in the limit at → 0.

As already pointed out in ref. [5], the effective action associated with the boundary

fields q(x) and q̄(x) is non-local due to the presence of the constant −1 in the

propagator (6.11). One can remove this term by redefining the fermion action in

4+1 dimensions according to

SF = ata
4

∑

0<t<T

∑

x

ψ(t, x)Dψ(t, x)

+ a4
∑

x

{
χ(x)P+χ(x) + χ(x)P−χ(x)

}
. (8.4)
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The additional fields P+χ(x) and P−χ(x) should be thought of as being attached

to the boundaries at t = 0 and t = T respectively. Since they are only affecting the

theory at scales of the cutoff, one is certainly free to include them. Now if we define

q(x) = (a/2)1/2
{
P−ψ(at, x) + P+ψ(T − at, x) + χ(x)

}
, (8.5)

q̄(x) = (a/2)1/2
{
ψ(at, x)P+ + ψ(T − at, x)P− + χ(x)

}
, (8.6)

it follows that

〈q(x)q̄(y)〉 = 1/DN . (8.7)

In the limit N → ∞ the associated effective action

Seff = a4
∑

x

q̄(x)Dq(x) (8.8)

has then the desired local form. Note that the field χ(x) plays a rôle similar to the

auxiliary fields introduced in ref. [10].

9. Free fermions

In the free case and if acting on plane waves with momentum p, the operator RR†

is given by †

RR† = b−1
{
iatp̊µγµγ5 + (1 − q)γ5 + q

}
, (9.1)

b = 1 − atm0 + 1
2atap̂2, (9.2)

q = 1
2

{
1 + b2 + a2

t p̊
2
}
. (9.3)

In particular, its eigenvalues are

λ± = q/b ±
√

(q/b)2 − 1 (9.4)

† The standard notations p̂µ = (2/a) sin(apµ/2) and p̊µ = (1/a) sin(apµ) are employed here
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with each of them being doubly degenerate. Note that

λ+ > 1, λ− < 1, λ+λ− = 1, (9.5)

for all momenta p. The total number of eigenvalues greater than 1 is, therefore,

precisely half the dimension of the space of fermion fields in 4 dimensions.

For free fermions the Dirac operator defined in sect. 7 can be worked out explicitly

and one finds that

aD = 1 +
iatp̊µγµ + q − 1√
a2

t p̊
2 + (q − 1)2

(9.6)

in momentum space. It is easy to check that the argument of the square root in this

expression is positive, for all real momenta p. The right-hand side of eq. (9.6) is,

therefore, everywhere smooth in the Brillouin zone. At small momenta we have

aD = c
{
ipµγµ + O(p2)

}
, c =

(
m0 − 1

2atm
2
0

)−1
, (9.7)

and for the inverse of the operator one obtains

(aD)−1 =
1

2

{
1 − iatp̊µγµ

q − 1 +
√

a2
t p̊

2 + (q − 1)2

}
. (9.8)

The denominator in this formula vanishes if pµ = 0 mod 2π/a but nowhere else,

i.e. there are no doubler modes. In the free case D is hence a perfectly acceptable

lattice Dirac operator.

In practice the parameters atm0 and am0 should be chosen so as to achieve good

convergence at large N , a small localization radius and small cutoff effects in the

energy-momentum relation. We now examine these condition one by one.

a. As discussed in sect. 7 the operator DN converges to D with a rate given by the

gap around 1 of the spectrum of RR†. More precisely, if we define ω = minp lnλ+,

the leading error term at large N is proportional to e−Nω. From eq. (9.4) we have

cosh ω = min
p

(q/b) (9.9)

and it is then possible to prove (appendix C) that

eω =





(1 − atm0)
−1 if atm0 ≤ 1 + at/a −

√
1 + (at/a)2,

1 − atm0 + 2at/a otherwise.
(9.10)
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Fig. 1. Analyticity properties of the right-hand side of eq. (9.6) as a function of p0

at fixed spatial momenta. The thick lines represent cut singularities. Depending on

the value of m0 and the spatial momenta, there is one pair of cuts on the imaginary

axis (figure a) or two pairs of cuts at Re p0 = 0 and Re p0 = π/a (figure b).

At fixed at/a the fastest convergence is obtained for

atm0 = 1 + at/a −
√

1 + (at/a)2. (9.11)

This value of m0 always lies in the allowed range and for the exponent ω one gets

eω = at/a +
√

1 + (at/a)2. (9.12)

Note that ω can be made arbitrarily large by choosing at to be greater than a.

b. Along the time axis the position space kernel D(x, y) of the Dirac operator decays

exponentially,

D(x, y) ∝ e−ǫ|x0−y0|/a, (9.13)

where ǫ is the minimum distance from the real line of the singularities of the right-

hand side of eq. (9.6) in the complex p0-plane. The singularities arise from the fact

that the argument of the square root vanishes at some points. It is possible to work

this out explicitly (appendix D) and for the singularity structure the result shown

in fig. 1 is then obtained.
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The exponent ǫ is equal to the minimum over all spatial momenta of the distance

of the cuts from the real axis. This is also worked out in appendix D, the result

being

eǫ =
at≤a

{
(1 − am0)

−1 if am0 ≤ 2 −
√

2,

3 − am0 otherwise,
(9.14)

eǫ =
at≥a





(1 − am0)
−1 if am0 ≤ 1 + a/at −

√
1 + (a/at)2,

1 − am0 + 2a/at otherwise.
(9.15)

The absolute maximum, ǫ = ln(1+
√

2), is obtained when at ≤ a and am0 = 2−
√

2.

In particular, it cannot be made arbitrarily large.

c. The one-particle energy E is determined by the pole of the propagator (9.8) in

the complex p0-plane closest to the real axis. At this point we have

q − 1 = −
√

a2
t p̊

2 + (q − 1)2, (9.16)

where it is understood that the square root is defined by analytic continuation in p0

from the real line to the cut plane shown in fig. 1. Eq. (9.16) implies p̊2 = 0 and it

follows from this that all solutions are of the form

ap0 = ±iaE mod 2π or ap0 = π ± iaE mod 2π (9.17)

with E ≥ 0 given by

sinh aE =
√

a2p̊2. (9.18)

Whether these are solutions of eq. (9.16) depends on the sign of q − 1 and the sign

of the square root on the right-hand side of the equation, which is determined by

the analytic continuation.

In the following we restrict attention to the region

|Im ap0| < ǫ (9.19)

where there are no cut singularities. The condition for the existence of a pole is then

that q < 1 at one of the values (9.17),(9.18) of p0. Since

b > 1 if ap0 = π ± iaE mod 2π, (9.20)
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the second type of solution does not occur and we only need to consider the case

p0 = ±iE. Eqs. (9.18) and (9.19) imply that such poles are also excluded unless

√
a2p̊2 < sinh ǫ. (9.21)

The right-hand side of this inequality is at most 1 since ǫ ≤ ln(1 +
√

2). Under

these conditions there are precisely 8 disjoint connected regions in momentum space

where (9.21) holds. Each of them is centred around one of the points

p = nπ/a, nk ∈ {0, 1}. (9.22)

The sign of q − 1 at p0 = ±iE cannot change in these regions, because p̊2 and q − 1

cannot both be equal to zero when |Im ap0| < ǫ (singularities of the Dirac operator

are excluded in this region). Since the sign is positive at all points (9.22) with n 6= 0,

the associated regions are free of poles.

We have thus shown that the propagator has a pole in the complex p0–plane with

|Im ap0| < ǫ if and only if the spatial momentum components satisfy

a|pk| < π/2 and
√

a2p̊2 < sinh ǫ. (9.23)

Moreover the pole position is p0 = ±iE with E ≥ 0 given by eq. (9.18). All other

singularities of the propagator are in the region |Im ap0| ≥ ǫ.

The results on the convergence at large N , the locality properties of D and the

poles of the propagator derived in this section suggest that an optimal choice of

parameters is

atm0 = am0 = 2 −
√

2. (9.24)

The exponents ω and ǫ are then given by

ω = ǫ = ln(1 +
√

2). (9.25)

Moreover the radius of the ball (9.23) assumes its maximal value, sinh ǫ = 1, for this

choice of parameters.
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10. Large N limit of det D

For t-independent gauge fields the determinant of D is given by eq. (5.7). This can

be rewritten in the form

detD = (1/at)
dF det{P+ + (RR†)NP−}(det B+)N

= (1/at)
dF det{ 1

2aDN}det{1 + (RR†)N}(det B+)N . (10.1)

Using the identity

1 + (RR†)N = {1 + (RR†)−N P̂+ + (RR†)N P̂−}{P̂− + RR†P̂+}N , (10.2)

it then follows that

det atD = eN∆S det{ 1
2aDN}det{1 + (RR†)−N P̂+ + (RR†)N P̂−}, (10.3)

where the action ∆S is given by

∆S = Tr
{
lnB+ + ln[P̂− + RR†P̂+]

}
≡ a4

∑

x

∆L(x). (10.4)

An important point to note here is that the density ∆L(x) is a local expression in

the gauge field. The first factor on the right-hand side of eq. (10.3) may hence be

interpreted as a contribution to the gauge field action in 4+1 dimensions while the

other factors converge to det{ 1
2aD} with exponentially small corrections.

Appendix A

To establish eq. (2.5) we choose an arbitrary basis φ1(x), . . . , φ2n(x) of fermion fields

in four dimensions. In this basis the operator M(t) becomes a complex 2n×2n matrix

and the space X of all histories

M(t), 0 < t < T, detB(t) 6= 0, (A.1)

is thus a complex manifold of dimension 4n2N where N = T/at −1. Evidently both

sides of eq. (2.5) are single-valued analytic functions on X .
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Lemma A.1. X is connected. In particular, to prove eq. (2.5) it suffices to establish

the relation on any open subset of X .

Proof: Let M(t) be any given element of X . We then construct a continuous path

Ms(t), 0 ≤ s ≤ 1, (A.2)

in X which contracts M(t) to zero. Explicitly the path is given by

atMs(t) =





ei2sθ [1 + atM(t)] − 1 if 0 ≤ s ≤ 1
2 ,

2(1 − s)
{
eiθ [1 + atM(t)] − 1

}
if 1

2 ≤ s ≤ 1,
(A.3)

where the angle θ should be chosen so as to ensure that

Bs(t) = 1 + 1
2at [Ms(t) + γ5Ms(t)γ5] (A.4)

is invertible for all s.

Along the first half of the curve we have Bs(t) = ei2sθB(t) and the roots of the

characteristic polynomial of this matrix are hence simply rotated in the complex

plane. Since there are a finite number of roots we can choose θ so that none of them

is real at s = 1
2 . For 1

2 ≤ s ≤ 1 the roots then move to 1 along straight lines that do

not pass through 0. In particular, Bs(t) is invertible for all s.

Lemma A.2. There exists an open subset Z of X such that, at any point in Z,

the characteristic polynomial

P (λ) = det
{
D − λγ0

}
(A.5)

has dF non-degenerate roots λ1, . . . , λdF
.

Proof: Since the coefficients of P (λ) depend analytically on the matrix elements of

M(t), it suffices to show that there exists one particular choice of M(t) where the

roots are non-degenerate (cf. sect. XII.1 of ref. [3]).

To this end it is helpful to pass to a basis in the space of fermion fields in which

γ0 is diagonal. For all t we then take M(t) to be diagonal as well. Let µ1, . . . , µdF

be the diagonal entries of the matrices γ0M(t), 0 < t < T , in an arbitrary order. We

may choose them to be given by µk = µk. At large µ, all eigenvalues of the matrices

γ0M(t) are then widely separated from each other. Since

∥∥ 1
2 {γ5(∂

∗
t + ∂t) − at∂

∗
t∂t}

∥∥ ≤ 2/at, (A.6)
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the derivative part of the operator γ0D may be treated as a small perturbation under

these conditions and one concludes that its eigenvalues are of the form

λk =
µ→∞

µk {1 + O[1/(atµ)]} , k = 1, 2, . . . , dF. (A.7)

Evidently these are just the roots of the polynomial P (λ).

We can now complete the proof of eq. (2.5) in a few lines. According to lemma A.1

and A.2 it suffices to establish the relation in all those cases where the polynomial

P (λ) [eq. (A.5)] has only non-degenerate roots. So let us assume that D is of this

type. For any complex number λ we then define

Mλ(t) = M(t) − λγ0 (A.8)

and denote the corresponding operators B(t) and S(t) by Bλ(t) and Sλ(t) respec-

tively. Since Bλ(t) = B(t) it is easy to show that Sλ(t) is a polynomial in λ satisfying

P−Sλ(t + at) =
(
−a2

t λ
2
)t/at

γ0B(t)−1B(t − at)
−1 . . . B(at)

−1γ0P− + . . . (A.9)

at large λ. The key observation is now that

det
{
P+ + P−Sλ(T )

}
= 0 ⇔ P (λ) = 0. (A.10)

Up to a normalization factor the determinant hence coincides with the polynomial.

The normalization can be worked out using eq. (A.9) and after setting λ = 0 the

identity (2.5) is obtained.

Appendix B

It is advantageous to work with a chiral representation of the Dirac matrices where

γµ =

(
0 eµ

e†µ 0

)
. (B.1)

A possible choice for the 2 × 2 matrices eµ is

e0 = −1, ek = −iσk (B.2)
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(k = 1, 2, 3, and σk are the Pauli matrices). It is then easy to check that

γµ
† = γµ, {γµ, γν} = 2δµν . (B.3)

Furthermore, if we define γ5 = γ0γ1γ2γ3, we have

γ5 =

(
1 0

0 −1

)
. (B.4)

In particular, γ5 = γ5
† and γ5

2 = 1.

Appendix C

To establish eq. (9.10) we first note that

p̊2 = p̂2 − 1
4a2(p̂2)2 + 1

4a2
∑

µ6=ν

p̂2
µp̂2

ν . (C.1)

Taking this into account we have

q/b =
1 + (1 − atm0)

2 +
[
(1 − atm0)ata + a2

t

]
p̂2 + 1

4a2
t a

2
∑

µ6=ν p̂2
µp̂2

ν

2(1 − atm0) + atap̂2
. (C.2)

As a function of p̂2
0 the ratio is thus of the form

q/b =
c1 + c2p̂

2
0

c3 + c4p̂2
0

(C.3)

with positive constants c1, . . . , c4. It follows from this that q/b assumes its minimum

when p̂2
0 is at the boundary of its domain, i.e. when p̂2

0 = 0 or p̂2
0 = 4/a2. The same

argument applies to the other momentum components as well and after some algebra

one then concludes that

cosh ω = min
0≤n≤4

1
2 (rn + 1/rn), rn = 1 − atm0 + 2(at/a)n, (C.4)

where n denotes the number of momentum components unequal to zero. In the

parameter range (4.3) we have

rn ≥ r1 > 1 for all n ≥ 1 (C.5)
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so that the minimum is attained for n = 0 or n = 1. This corresponds to the cases

listed in eq. (9.10).

Appendix D

As already mentioned in sect. 9, the singularities of the free Dirac operator in mo-

mentum space arise from the zeros of the argument of the square root in eq. (9.6).

To find them we first note that

a2
t p̊

2 + (q − 1)2 = (q − b)(q + b). (D.1)

The factors on the right-hand side of this equation satisfy

q ± b = 0 ⇔ c± + d±a2p̂2
0 = 0 (D.2)

with coefficients c± and d± given by

c+ = (2 − atm0)
2 + (2 − atm0 + at/a)atap̂

2 + 1
4a2

t a
2
∑

k 6=l

p̂2
kp̂2

l , (D.3)

d+ = (2 − atm0 + at/a)at/a + 1
2a2

t p̂
2, (D.4)

c− = a2m2
0 + (1 − am0)a

2p̂2 + 1
4a4

∑

k 6=l

p̂2
kp̂2

l , (D.5)

d− = 1 − am0 + 1
2a2p̂2 (D.6)

Since c+ and d+ are both positive, the solutions of q + b = 0 are of the form

ap0 = ±iv, v > 0, cosh v = 1 + 1
2 c+/d+. (D.7)

These points lie on the imaginary axis and
√

q + b thus extends to an analytic

function of ap0 in the complex plane cut from ±iv to ±i∞.

In the case of the other equation, q − b = 0, the situation is slightly more compli-

cated, because d− can be negative if am0 > 1. Accordingly there are two kinds of

solutions,

ap0 = ±iv, v > 0, cosh v = 1 + 1
2 c−/d− (if d− > 0), (D.8)

ap0 = π ± iv, v > 0, cosh v = −1 − 1
2 c−/d− (if d− < 0), (D.9)
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and there is no solution if d− = 0. Depending on the sign of d−, the factor
√

q − b

thus extends to an analytic function of ap0 in the complex plane cut from ±iv to

±i∞ or from π ± iv to π ± i∞. One thus ends up with the singularity structure

shown in fig. 1.

To compute the exponent ǫ we now need to minimize the v’s determined through

eqs. (D.7)–(D.9) over all spatial momenta. This is similar to minimizing the ratio

q/b (appendix C). In particular, the minimum is attained at vanishing momentum

or at the corners of the Brillouin zone. The minima are

from eq. (D.7): eǫ = 1 − am0 + 2a/at, (D.10)

from eq. (D.8): eǫ =

{
(1 − am0)

−1 if am0 ≤ 2 −
√

2,

3 − am0 otherwise,
(D.11)

from eq. (D.9): eǫ = (am0 − 1)−1 if am0 > 1. (D.12)

Taking the minimum of these three values yields the result quoted in sect. 9.
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