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1. Introduction

The renormalizability of the Langevin equation [1,2] implies that the autocorrelation

times in numerical stochastic perturbation theory [3–5] grow approximately like

1/a2 as the lattice spacing a is taken to zero. Since the variances of the calculated

coefficients cannot, in general, be expressed through the expansion coefficients of

physical observables, the renormalizability of the Langevin equation alone however

does not allow to predict the scaling behaviour of the statistical errors.

Numerical experiments suggest that the variances of physical quantities grow only

slowly towards the continuum limit (see ref. [6], for example). The goal in this note

is to show that, up to any fixed order in perturbation theory, the variances of the

fields evolved by the Langevin equation do in fact increase at most logarithmically.

2. Stochastic perturbation theory

The theoretical analysis presented in this note is expected to apply to any renormal-

izable theory in four space-time dimensions. For simplicity, and in order to bring

out the essence of the argument most clearly, the theory considered is taken to be

the one of a real scalar lattice field φ(x) with action

S = a4
∑

x

{

1

2
∂µφ(x)∂µφ(x) +

1

2
(m2 + δm2)φ(x)2 +

g0
4!
φ(x)4

}

. (2.1)
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Here g0 denotes the bare coupling, m the additively renormalized mass parameter

and

δm2 =
∞
∑

k=1

(δm2)(k)gk0 (2.2)

the (quadratically divergent) additive mass counterterm. The operators ∂µ are the

forward nearest-neighbour lattice derivatives.

A suitable normalization condition for the renormalized mass is assumed, but does

not need to be specified. Since the focus in this note is exclusively on the cancellation

of the power divergences, logarithmic divergences and the associated counterterms

will not be discussed. It is thus understood that the lattice regularization is never

actually removed.

2.1 Langevin equation

In stochastic perturbation theory, the field φ(x) is evolved as a function of the

Langevin time t according to

∂tφ = (∆−m2 − δm2)φ−
g0
3!
φ3 + η, ∆ =

3
∑

µ=0

∂∗µ∂µ, (2.3)

where η is a Gaussian random field with mean zero and variance

〈η(t, x)η(s, y)〉 = 2a−4δxyδ(t− s). (2.4)

The equation is solved in powers of the coupling by substituting

φ =
∞
∑

k=0

gk0φk (2.5)

and equating the terms of equal order in g0. As a result a tower of equations

∂tφ0 = (∆−m2)φ0 + η, (2.6)

∂tφ1 = (∆−m2)φ1 − (δm2)(1)φ0 −
1

3!
φ3
0, (2.7)

∂tφ2 = (∆−m2)φ2 − (δm2)(2)φ0 − (δm2)(1)φ1 −
1

2!
φ2
0φ1, (2.8)
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etc., is obtained.

In order to simplify the notation, it is helpful to introduce the operator

D = ∂t −∆+m2 (2.9)

and the interaction term

Rk = −
k−1
∑

j=0

(δm2)(k−j)φj −
1

3!

k−1
∑

j1,j2,j3=0

δk,j1+j2+j3+1φj1φj2φj3 . (2.10)

The tower of equations then assumes the form

Dφ0 = η, (2.11)

Dφk = Rk for all k ≥ 1. (2.12)

Since the terms on the right of these equations depend only on the lower-order fields,

the equations can be solved recursively.

2.2 Frequency-momentum space

Passing to frequency-momentum space,

φ̃k(ω, p) =

∫

∞

−∞

dt a4
∑

x

eiωt−ipxφk(t, x), (2.13)

the inverse of the operator D is given by the kernel

K̃(ω, p) = {p̂2 +m2 − iω}−1, (2.14)

where p̂µ = 2
a
sin( 12apµ) as usual. For the solutions of equations (2.11),(2.12), the

expressions

φ̃0(ω, p) = K̃(ω, p)η̃(ω, p), (2.15)

φ̃k(ω, p) = K̃(ω, p)R̃k(ω, p), k ≥ 1, (2.16)

are thus obtained.
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The kernel K̃(ω, p) is non-singular and so is the two-point function

〈φ̃0(ω, p)φ̃0(ν, q)〉 = (2π)5δ(ω + ν)δP (p+ q)G̃(ω, p), (2.17)

G̃(ω, p) = 2K̃(ω, p)K̃(−ω,−p) = 2{(p̂2 +m2)2 + ω2}−1. (2.18)

Here and below, the bracket 〈. . .〉 stands for the average over the noise field η and

δP (p) =
∑

n∈Z4

δ(p+ 2πn/a) (2.19)

for the periodic δ-function.

2.3 Feynman diagrams

The fields φ̃l, l = 0, 1, 2, . . ., can be represented through rooted tree diagrams with

the random field η̃ attached to their leaves. In these diagrams, the vertices

k j
=

{

−(δm2)(k−j) if k > j,

0 otherwise,
(2.20)

j3

j1
j2k

= −δk,j1+j2+j3+1, (2.21)

correspond to the interaction terms in eq. (2.10), while the lines

ω,p

k
= K̃(ω, p), (2.22)

represent the propagation of the fields φk. The random sources at the leaves,

ω,p
k

= δk0η̃(ω, p), (2.23)

are represented by a crossed circle. Since the random fields only occur in the leading-

order equation (2.11), the attached line must have label k = 0. Examples of diagrams
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Fig. 1. Feynman diagrams contributing to φ̃0(ω, p), φ̃1(ω, p) and φ̃2(ω, p), respec-

tively. For simplicity, the line label is suppressed if it is equal to 0. The frequency-

momentum (ω, p) flows into the diagrams at the external line ending in a little square

(see subsect. 2.3 for the values of the propagators and vertices).

are shown in fig. 1. Clearly, for a diagram to be non-zero, the line labels must be

such that the expressions (2.20) and (2.21) for the vertices do not vanish.

All lines in these diagrams carry a frequency-momentum. There is a frequency-

momentum conservation δ-function at each vertex and the frequency-momenta as-

signed to the internal lines (including the ones from the sources to the vertices) are

integrated over. As usual, the contributions of the diagrams must be divided by

their symmetry factors. The field φ̃k is given by the sum of all tree diagrams whose

root line (the one ending in the little square) has label k.

2.4 Correlation functions

The n-point functions

〈φ̃k1
(ω1, p1) . . . φ̃kn

(ωn, pn)〉 (2.24)

are obtained by contracting the random source fields at the leaves of the tree dia-

grams contributing to the fields φ̃kj
(ωj , pj). Each contraction combines the directed

lines attached to the sources and yields a bidirected line

ω,p

0
= G̃(ω, p) (2.25)

with label 0. The label may be omitted since there are no lines of this type with

non-zero label. Since the random fields all get contracted, the diagrams contributing

to the correlation functions (2.24) have no directed lines with label 0, i.e. all lines

propagating the field φ0 become bidirected ones. The Feynman rules are otherwise

the same as before.
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3. Problem description

The renormalizability of the theory and the Langevin dynamics [1,2] guarantees that

the fixed-order linear combinations

∞
∑

k1,...,kn=0

δk1+...+kn,k〈φ̃k1
(ω1, p1) . . . φ̃kn

(ωn, pn)〉, k = 0, 1, 2, . . . , (3.1)

of the correlation functions (2.24) are at most logarithmically divergent, i.e. the

mass counterterm in the action (2.1) removes all power divergences. However, while

the variances of the fixed-order combinations of fields are again given by the corre-

lation functions (2.24), they cannot, in general, be expressed through the complete

fixed-order combinations (3.1). The statistical errors of any observable computed in

stochastic perturbation theory are therefore not obviously free of power-divergent

contributions†.

The aim in the present note is to prove that all correlation functions (2.24) are in

fact only logarithmically divergent in the continuum limit. First the structure of the

possible power divergences is determined by representing the correlation functions

through a functional integral in 4+1 dimensions. Using the fact that the fixed-order

correlation functions (3.1) are known to be free of power divergences, the coefficients

of the power-divergent counterterms (other than δm2) are then shown to vanish.

4. Field theory in 4+1 dimensions

In the following, the theory is considered up to some fixed order n in the coupling.

Equations (2.11),(2.12) may then be regarded as a stochastic equation for a multiplet

of n+1 fields. Following ref. [1], the associated field theory in 4+1 dimensions is in-

troduced, which allows the correlation functions (2.24) to be studied using standard

tools.

† Beyond the lowest few orders in the coupling, the statistical errors in instantaneous stochastic

perturbation theory [7], for example, appear to grow like a power of the lattice spacing [6].
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4.1 Fields and action

The expectation value of any product O[φ] of the fields φ0, . . . , φn is given by

〈O〉 =
1

Z

∫

D[η]D[φ0] . . .D[φn] e
−Sη

× δ(Dφ0 − η)δ(Dφ1 −R1) . . . δ(Dφn −Rn)O[φ], (4.1)

where

Sη =
1

4

∫

dt a4
∑

x

η2. (4.2)

Up to a constant factor, which is canceled by the normalization factor Z, the

functional integral (4.1) yields the expectation value of O[φ] as determined by the

stochastic equations (2.11),(2.12) and the average over the random field. The func-

tional integral representation is thus completely equivalent to the stochastic equa-

tions.

The Dirac δ-functions in eq.(4.1) may now be eliminated by introducing a set of

purely imaginary Lagrange multiplier fields L0(t, x), . . . , Ln(t, x). After integrating

out the random field, the functional integral then becomes

〈O〉 =
1

Z

∫

D[φ0] . . .D[φn]D[L0] . . .D[Ln] e
−ŜO[φ], (4.3)

Ŝ =

∫

dt a4
∑

x

{

L0(Dφ0 − L0) +
n
∑

k=1

Lk(Dφk −Rk)

}

. (4.4)

It is understood here that an infinitesimal term proportional to
∑n

k=1 L
2
k is added

to the action so as to guarantee the absolute convergence of the integral.

4.2 Perturbation expansion

The functional integral (4.3) may be expanded in powers of the interaction terms

Rk. As will become clear in a moment, the expansion effectively ends after a finite

number of terms, since all higher-order terms vanish identically.

To lowest order, the action Ŝ reduces to a non-degenerate quadratic form in the

fields φ0, . . . , Ln. The theory is thus Gaussian at this order, the non-zero two-point
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functions being given by

〈φk(t, x)Lj(s, y)〉LO = δkj

∫

ω,p

eiω(t−s)−ip(x−y)K̃(ω, p), k, j = 0, . . . , n, (4.5)

〈φ0(t, x)φ0(s, y)〉LO =

∫

ω,p

eiω(t−s)−ip(x−y)G̃(ω, p). (4.6)

These two-point functions exactly correspond to the propagators that appear in the

diagrams contributing to the correlation function (2.24) [cf. eqs. (2.22),(2.25)].

At higher orders in the expansion, a series of Feynman diagrams is obtained, as

usual, with the above propagators and interaction vertices given by the interaction

terms Rk. The Feynman rules for the vertices are the same as in sect. 2.4, apart

from the fact that the diagrams have inward-directed external lines if the correlation

function considered includes a product of the Lagrange-multiplier fields. Since there

is only finite number of diagrams that contributes to a given correlation function,

the expansion terminates (as already mentioned). The functional integral is thus a

rather peculiar one.

Algebraically the finiteness of the expansion derives from the fact that the label of

the outgoing line of each vertex must be larger than the labels of the ingoing lines.

In particular, there cannot be any closed loops of directed lines, since the line label

increases from one vertex to the next. Each vertex is thus connected to an outward-

directed external lines through a path of directed lines. The labels of the external

lines therefore set an upper limit on the number of vertices in the diagram, the labels

of their outgoing lines and, consequently, on the number of non-zero diagrams.

5. Absence of power divergences

The discussion in the previous section reveals that the correlation functions (2.24)

are those of local field theory in 4+1 dimensions. Since the perturbation expansion

of this theory has the standard form, with well-behaved propagators and vertices,

the singularities of the associated Feynman diagrams can be analyzed and subtracted

as usual, using power-counting and local counterterms.
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Fig. 2. Diagrams contributing to the L2φ1, L2φ0 and L1L1 vertex functions (from

left to right). Amputated external lines are graphically distinguished from ordinary

external lines by omitting the little square at their outer end (cf. fig. 1).

5.1 Vertex functions

The correlation functions of the fields φk and Lj can be decomposed into connected,

1-particle irreducible parts, the vertex functions of the theory, in the standard man-

ner. In perturbation theory, the vertex functions are given by sums of connected,

1-particle irreducible diagrams with amputated external lines. Examples of such

diagrams are drawn in fig. 2.

The (amputated) external lines of the vertex diagrams are either outward or in-

ward directed. There are no undirected external lines. In the diagrams contributing

to the full correlation functions, an outward directed line of a vertex subdiagram

with label k is the Lk-end of the φkLk propagator (4.5). Inward directed lines are

the φk-end of the same propagator or of the φ0φ0 propagator (4.6) (if k = 0).

Diagrams contributing to a vertex function must have at least one vertex and

therefore at least one outward directed line with label k > 0 (cf. discussion at the

end of sect. 4). Moreover, the diagrams have no outward directed lines with label 0,

since there is no vertex proportional to L0.

5.2 Structure of the power-divergent terms

Power-counting now shows that the primitive degree of divergence of the vertex

diagrams with n1 external Lk and n2 external φj lines is equal to 6 − 3n1 − n2.

Since the action (4.4) is invariant under a change of sign of all fields, the non-zero

diagrams must have an even number of external lines. Moreover, as noted above,

n1 must be positive. The only power-divergent diagrams are therefore those with

n1 = n2 = 1, all other diagrams being at most logarithmically divergent.

It follows from the discussion so far that the power divergences in the correlation

functions of the Lk and φj fields, if any, can be cancelled by adding the counterterms

∫

dt a4
∑

x

n
∑

k>j=0

ckjLkφj (5.1)

to the action (4.4) with the appropriate quadratically divergent coefficients ckj .
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5.3 Fixed-order two-point functions

As already mentioned, the fixed-order two-point correlation functions

k
∑

j=0

〈φ̃k−j(ω, p)φ̃j(ν, q)〉 = (2π)5δ(ω + ν)δP (p+ q)G̃k(ω, p) (5.2)

are at most logarithmically divergent before the counterterms (5.1) are added to the

theory. Once the counterterms are included, their contribution to these combinations

of correlation functions must be finite or at most logarithmically divergent, since

there are no power-divergent terms to be canceled.

The structure of the counterterms (5.1) is such that they make no contribution

to the fixed-order correlation function (5.2) if k = 0. For k = 1 their contribution is

−c10

{

K̃(ω, p)G̃(−ω,−p) + G̃(ω, p)K̃(−ω,−p)
}

, (5.3)

which shows that the coefficient c10 must vanish.

In essentially the same way, the vanishing of the coefficients ckj can be proved

recursively. Assuming the coefficients clj are known to vanish for all l < k, the only

two-point functions in eq. (5.2) to which the counterterms (5.1) can contribute are

〈φ̃k(ω, p)φ̃0(ν, q)〉 and 〈φ̃0(ω, p)φ̃k(ν, q)〉. Explicitly, their contributions are

−
k−1
∑

j=0

ckj

{

K̃(ω, p)H̃j(−ω,−p) + H̃j(ω, p)K̃(−ω,−p)
}

, (5.4)

where H̃j(ω, p) denotes the φ0φj two-point function in frequency-momentum space.

Since the index j is always less than k, the recursion hypothesis implies that these

two-point functions are at most logarithmically divergent. Moreover, the functions

multiplying the coefficients ckj in eq. (5.4) are linearly independent (at p = 0, for

example, their poles at ω = ±im2 have different multiplicities). In order to guarantee

that G̃k(ω, p) remains free of power divergences, the coefficients ckj must therefore

all be equal to zero.

5.4 Remarks

The proof of the absence of power divergences given in this section rests on the fact

that the correlation functions of the fields φk are those of a local field theory. This

property strongly constrains the structure the power divergent parts of the Feynman

diagrams.
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Another property of the theory, which was heavily used, is the time-ordering that

derives from the Langevin equation. On the level of the Feynman diagrams, the

time-ordering is associated with the directed lines and the particular ordering of

the vertices along paths of directed lines. The theory in 4+1 dimensions is, for this

reason, of a rather special kind, where the perturbation expansion terminates and

the counterterms (5.1) cannot be arbitrarily inserted in the Feynman diagrams.
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