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1. Introduction

Let us consider a formulation of lattice QCD with a doublet of quarks of equal mass

m and let us denote by Dm the massive lattice Dirac operator. We may then define

the hermitian operator

Q = cγ5Dm (1.1)

and fix the constant c such that ‖Q‖ ≤ 1 for all gauge fields U(x, µ).

The standard version of the PHMC algorithm [1–3] is based on the representation

of the fermion determinant through a functional integral

det
{

Q2Pn,ǫ(Q
2)

}

∫

D[φ†]D[φ] e−SB [U,φ], SB [U, φ] =
(

φ, Pn,ǫ(Q
2)φ

)

, (1.2)

over all complex-valued Dirac fields φ on the lattice, where (φ, ψ) denotes the natural

scalar product in the space of these fields and Pn,ǫ(y) some polynomial of degree

n that approximates the function 1/y in the range ǫ ≤ y ≤ 1. The idea is then to

apply the HMC algorithm to the integral over the pseudo-fermion field φ and the

gauge field U , while the first factor in eq. (1.2) is treated as a correction.

When this algorithm is used, most of the computer time is spent for the calculation

of the force field

F a
µ (x) =

d

ds
SB [Us, φ]

s=0
, (1.3)

Us(y, ν) ≡
{

1 + s δxyδµνT a + O(s2)
}

U(y, ν), (1.4)
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where T a is any basis of (anti-hermitian) generators of the gauge group. The field is

usually evaluated by decomposing the polynomial Pn,ǫ(y) into its root factors and

differentiating one factor after the other. This method is efficient in terms of both

memory and speed, but it is also well-known to be numerically delicate (there can

be catastrophic significance losses) [3,4].

In the present note an alternative method of evaluation is derived that is equally

efficient and that can be shown to be numerically safe. It makes use of some partic-

ular properties of the Chebyshev polynomials and does not rely on the root decom-

position of the polynomial Pn,ǫ(y).

2. Chebyshev polynomials

2.1 Definition

Usually only the Chebyshev polynomials Tn(z) of the first kind are considered, but

in the following the second series Un(z) of polynomials will play an equally important

rôle. The polynomials are defined by

Tn(cos θ) = cos(nθ), Un(cos θ) =
sin((n + 1)θ)

sin θ
, (2.1)

and are related to each other through

Tn(z) = Un(z) − zUn−1(z). (2.2)

Both series of polynomials satisfy the same recursion relation,

Tn+1(z) = 2zTn(z) − Tn−1(z), (2.3)

Un+1(z) = 2zUn(z) − Un−1(z), (2.4)

for all n ≥ 1 but with different initial values at n = 1.

2.2 Generating functions

In many cases algebraic identities involving the Chebyshev polynomials can be de-

duced using the generating functions

(1 − t2)(1 − 2tz + t2)−1 = T0(z) + 2
∞
∑

k=1

Tk(z)tk, (2.5)
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(1 − 2tz + t2)−1 =
∞
∑

k=0

Uk(z)tk. (2.6)

We may, for example, establish the relation

Tn+1(w) − Tn+1(z) = (w − z)
{

Un(w)T0(z) + 2
n

∑

k=1

Un−k(w)Tk(z)
}

(2.7)

for any n ≥ 0 by expanding the product of the generating functions (2.5) and (2.6).

Similarly the identity

Un(z) =
n

∑

k=0

Pn−k(z)Pk(z) (2.8)

is obtained by noting that (1−2tz+t2)−1/2 is a generating function for the Legendre

polynomials Pn(z).

2.3 Clenshaw recursion — first & second kind

Sums of Chebyshev polynomials such as

s = 1
2a0 +

n
∑

k=1

akTk(z) (2.9)

may be evaluated for any specified value of z using the Clenshaw recursion [7]. In

the form in which it is normally quoted, the recursion reads

s0 = an, s1 = 2zs0 + an−1, (2.10)

sk = 2zsk−1 − sk−2 + an−k, k = 2, . . . , n − 1, (2.11)

and the sum s is then obtained through

s = zsn−1 − sn−2 + 1
2a0. (2.12)

To establish the correctness of this procedure, it suffices to note that

sk =
k

∑

j=0

an−k+jUj(z), k = 0, . . . , n − 1, (2.13)
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satisfies the recursion. This is a direct consequence of eq. (2.4). In the last step,

eq. (2.12), the identity (2.2) is then applied to convert the result of the recursion to

the sum s.

There is an alternative form of the Clenshaw recursion that generates the sums

s̃k = 1
2an−k +

k
∑

j=1

an−k+jTj(z) (2.14)

instead of the sums sk. It is given by

s̃0 = 1
2an, s̃1 = 2zs̃0 + 1

2an−1, (2.15)

s̃k = 2zs̃k−1 − s̃k−2 + 1
2 (an−k − an−k+2), k = 2, . . . , n, (2.16)

and the last term that is obtained, s̃n, is then equal to the desired sum s. Apart from

the fact that the coefficients on the right-hand sides of the equations are different,

this recursion is identical to the standard Clenshaw recursion (2.11). In particular,

both are numerically stable in the sense that there is no exponential amplification

of rounding errors.

A subtle point to be noted is, however, that the polynomials Uk(z) can be con-

siderably larger than Tk(z). In the vicinity of the points z = ±1 the ratio of the

polynomials is in fact of order k. The significance of the result will thus often be

reduced by this much in the last step (2.12) of the standard recursion. On the other

hand, if the alternative form of the recursion is used, a similar significance loss may

occur when the differences an−k − an−k+2 are calculated. In general there is hence

no particular advantage in using one or the other recursion.

An important case where this argumentation does not apply is when the sum s is

to be evaluated in single-precision arithmetic while the coefficients ak are known in

double precision. If the differences an−k − an−k+2 are computed in double precision

and rounded to single precision, the second form of the recursion will then usually

yield more accurate results than the standard recursion. At least this is so for the

polynomials Pn,ǫ, Lk, Rk and An,ǫ discussed later in this note.
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3. Definition and properties of Pn,ǫ(y)

The techniques that will be discussed later for the calculation of the force F a
µ (x) are

expected to apply for any decent choice of the polynomial Pn,ǫ(y). To be completely

explicit we shall, however, consider a particular polynomial in this note that has

previously been employed in the context of the multi-boson [5,6] and the PHMC

[2,3] algorithms.

3.1 Definition

We first map the range ǫ ≤ y ≤ 1 to the interval [−1, 1] by introducing the variable

z = (2y − 1 − ǫ)/(1 − ǫ). (3.1)

It is then also convenient to set

w = −(1 + ǫ)/(1 − ǫ) ≡ − cosh ω, ω > 0, (3.2)

which is the value of z at y = 0. The division by y on the right-hand side of

Pn,ǫ(y) =
Tn+1(w) − Tn+1(z)

yTn+1(w)
(3.3)

thus leaves no remainder and Pn,ǫ(y) is hence a well-defined polynomial in y of

degree n.

3.2 Approximation property

In the range ǫ ≤ y ≤ 1 this polynomial approximates the function 1/y with a uniform

relative error equal to

δ =
1

|Tn+1(w)| . (3.4)

For y ∈ [0, ǫ) and large n, the polynomial converges monotonically to 1/y from below

with a gradually reduced rate of convergence. In particular, its value at y = 0 is

Pn,ǫ(0) = −2(n + 1)

1 − ǫ
· Un(w)

Tn+1(w)
. (3.5)

In the cases of interest where ǫ ≪ 1 and nω ≫ 1 we have

Tn+1(w) ≃ 1
2 (−1)n+1e(n+1)ω, Un(w) ≃ 1

2 (−1)n e(n+1)ω

sinhω
, (3.6)
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up to exponentially small corrections. The approximation error is thus exponentially

decreasing while Pn,ǫ(0) is roughly equal to nω/2ǫ.

3.3 Chebyshev series

From the definition (3.3) and the identity (2.7) it is now immediate that

Pn,ǫ(y) = 1
2a0 +

n
∑

k=1

akTk(z), (3.7)

a0 = − 4

1 − ǫ
· Un(w)

Tn+1(w)
, ak = a0

Un−k(w)

Un(w)
(k = 1, . . . , n). (3.8)

Note that the coefficients ak have alternating sign and are approximately expo-

nentially decreasing in magnitude with exponent ω. The series can thus be safely

evaluated using the Clenshaw recursion at any value of y in the interval [0, 1] (and

not only for ǫ ≤ y ≤ 1).

4. Explicit formulae for the force F a
µ (x)

When the right-hand side of eq. (1.3) is evaluated, a series of terms is generated

that are linear expressions in the operator

Q̇a
µ(x) =

{

d

ds
Q

U→Us

}

s=0

. (4.1)

The series can be rearranged in many different ways and we now derive some par-

ticular representations in terms of the Chebyshev polynomials.

4.1 Basic representation

If we substitute y → Q2 in the definition (3.1) of the variable z, the polynomials

Tk(z) and Uk(z) become hermitian operators that depend on the gauge field through

Q. In particular, they can be differentiated which yields a sum of expressions of the

form “polynomial in Q times Q̇ times another polynomial” (for simplicity the indices

a, µ and the argument x are now often suppressed).
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Using the generating functions (2.5) and (2.6), it is not difficult to work this out.

In the case of the polynomials Tk(z) we have

∞
∑

k=1

Ṫk(z)tk = (1 − 2tz + t2)−1tż(1 − t2)(1 − 2tz + t2)−1, (4.2)

and after expanding the right-hand side of this equation we conclude that

Ṫk(z) = Uk−1(z)żT0(z) + 2
k−1
∑

j=1

Uk−j−1(z)żTj(z) (4.3)

for all k ≥ 1. An explicit formula for the force is thus given by

F a
µ (x) =

n
∑

k=1

ak

{

(Uk−1(z)φ, żT0(z)φ) + 2
k−1
∑

j=1

(Uk−1−j(z)φ, żTj(z)φ)

}

, (4.4)

where use has been made of the fact that Q is hermitian and that the Chebyshev

polynomials are real.

4.2 Exploiting hermiticity

If we now insert

ż =
2

1 − ǫ

(

QQ̇ + Q̇Q
)

(4.5)

in this expression, the number of terms appears to be doubled since the polynomials

on the left and the right in the scalar products are not the same. As it turns out, half

of the terms are precisely the complex-conjugate of the other half, and the number

of terms that need to be computed is hence only n.

To show this we first note that

(

Uk−1(z)φ, Q̇QT0(z)φ
)

+ 2

k−1
∑

j=1

(

Uk−1−j(z)φ, Q̇QTj(z)φ
)

=

(

T0(z)φ, Q̇QUk−1(z)φ
)

+ 2
k−1
∑

j=1

(

Tj(z)φ, Q̇QUk−1−j(z)φ
)

. (4.6)
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This identity is easily established by multiplication with tk and summing from k = 1

to infinity. The equation is then seen to be equivalent to

(1 − 2tz + t2)−1tQ̇Q(1 − t2)(1 − 2tz + t2)−1 =

(1 − t2)(1 − 2tz + t2)−1tQ̇Q(1 − 2tz + t2)−1 (4.7)

which is obviously satisfied.

Since all operators are hermitian, it now follows that

F a
µ (x) =

4

1 − ǫ

n
∑

k=1

ak

{

Re
(

QUk−1(z)φ, Q̇T0(z)φ
)

+ 2
k−1
∑

j=1

Re
(

QUk−1−j(z)φ, Q̇Tj(z)φ
)

}

. (4.8)

This formula would already be suitable for numerical evaluation, but there is an

even better representation where the number of applications of Q that need to be

performed is reduced to its absolute minimum.

4.3 Improved formula

To derive this representation, we introduce another set b1, . . . , bn of coefficients in

such a way that

an−k = 1
4 (1 − ǫ)(−1)n

k
∑

l=0

bn−lbn−k+l for all k = 0, . . . , n − 1. (4.9)

In the present case these equations assume the form

Uk(w) = 1
16 (1 − ǫ)2(−1)n+1Tn+1(w)

k
∑

l=0

bn−lbn−k+l, (4.10)

and from eq. (2.8) we then infer that

bn =
4

1 − ǫ
|Tn+1(w)|−1/2

, bl = bnPn−l(w). (4.11)

It is easy to show that this is the unique solution of eq. (4.9) with bn > 0.
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Next we insert (4.9) in (4.8) and rearrange the summations over the indices k, j

and l in a particular way. As a result the representation

F a
µ (x) = (−1)n

n
∑

k=1

Re
(

QLk−1(z)φ, Q̇a
µ(x)Rn−k(z)φ

)

(4.12)

is obtained, where the “left” and “right” polynomials are given by

Lk(z) =
k

∑

j=0

bn−k+jUj(z), (4.13)

Rk(z) = bn−kT0(z) + 2

k
∑

j=1

bn−k+jTj(z) (4.14)

(k = 0, . . . , n − 1). As explained below, these polynomials can be calculated simul-

taneously using the Clenshaw recursion, thus saving half of the work that would be

required for the evaluation of the force via the representation (4.8).

5. Asymptotic analysis

Using a well-known integral representation of the Legendre polynomials we have

bl = (−1)n−lbn

∫ π

−π

dα

2π
(cosh ω + sinhω cos α)

n−l
. (5.1)

It follows from this that the coefficients have alternating sign and decreasing mag-

nitude. If (n − l)ω is large, the integral can be expanded about the saddle point at

α = 0 which yields the asymptotic expression

bl ∼ (−1)n−lbn
e(n−l+ 1

2
)ω

√

2π(n − l) sinhω
. (5.2)

The ratio |bl/b1| thus falls roughly exponentially with exponent ω from 1 to a value

at l = n of about (2πnω)1/2 e−nω.
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When eq. (4.11) is inserted in the definition (4.13), the series

Lk(z) = bn

k
∑

j=0

Pk−j(w)Uj(z) (5.3)

is obtained, which shows that these polynomials depend on n through the normal-

ization factor bn only. Their behaviour at large kω can be worked out by summing

the geometric series in

Lk(z) = bn

∫ π

−π

dα

2π

k
∑

j=0

(−1)k−j (cosh ω + sinhω cos α)
k−j sin((j + 1)θ)

sin θ
(5.4)

and evaluating the integral at the saddle point α = 0. All these remarks also apply

(with the obvious modifications) to the second series of polynomials. For the leading

terms the calculation yields

Lk(z) ∼ − 1
4 (1 − ǫ)bn−k−1/y, Rk(z) ∼ 1

2 (1 − ǫ) sinhωbn−k/y, (5.5)

and both polynomials are thus proportional to 1/y when kω ≫ 1.

We may conclude from this that the sum (4.12) is approximately of the form

(−1)n+1 1
8 (1 − ǫ)2 sinhω

∑

k

bn−kbk Re
(

(Q/y)φ, Q̇b
µ(x)(1/y)φ

)

(5.6)

except at the boundaries of the summation range where either kω or (n−k)ω is not

large. In particular, each term makes a contribution of the same sign and there are,

therefore, no important cancellations. Note that

(−1)n+1 1
8 (1 − ǫ)2 sinhωbn−kbk ∼ − 2

π
[k(n − k)]

−1/2
, (5.7)

n−1
∑

k=1

[k(n − k)]
−1/2 =

n→∞

∫ 1

0

dx [x(1 − x)]
−1/2

= π. (5.8)

These results are in nice agreement with the expectation that the sum (4.12) should

be an approximation of −2Re
(

Q−2φ, QQ̇b
µ(x)Q−2φ

)

for sufficiently large n.
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6. Numerical procedure

We now describe in some detail how to evaluate the representation (4.12) of the

force F a
µ (x) on a computer.

6.1 Computation of the coefficients bl

To calculate the coefficients we may use the backward recursion

bn−k =
1 − 2k

k
cosh ωbn−k+1 +

1 − k

k
bn−k+2, k = 2, . . . , n − 1, (6.1)

starting from the initial values

bn =
4

1 − ǫ
[cosh((n + 1)ω)]

−1/2
, bn−1 = − cosh ωbn. (6.2)

This method is numerically safe since the coefficients bn−k are increasing with k

while the other independent solution of the recursion, the Legendre functions of the

second kind, decreases exponentially.

6.2 Application of the Clenshaw recursion

Let us now consider the fields

ψk = Lk(z)φ, χk = Rk(z)φ. (6.3)

Using the second form of the Clenshaw recursion we have

χ0 = bnφ, χ1 = 2zχ0 + bn−1φ, (6.4)

χk = 2zχk−1 − χk−2 + (bn−k − bn−k+2)φ (k = 2, . . . , n − 1), (6.5)

and the other fields are then given by

ψ0 = χ0, ψ1 = χ1, (6.6)

ψk = ψk−2 + χk (k = 2, . . . , n − 1). (6.7)

The fields that are saved in the course of the recursion are χk and Qψk, 0 ≤ k < n,

since these are the ones that are needed for the calculation of the matrix elements
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in eq. (4.12). Note that the latter can be directly obtained through

Qψ0 = Qχ0, Qψ1 = Qχ1, (6.8)

Qψk = Qψk−2 + Qχk. (6.9)

The additional work is miminal here, since Qχk has to be computed anyway when

χk+1 is calculated.

6.3 Operation count and memory usage

It is obvious that in this way the total number of applications of Q that is required

is equal to 2n − 1. In addition about 4n real linear combinations of the type φ1 →
r1φ1 + r2φ2 must be formed.

When implemented straigthforwardly, this computation needs storage space for 2n

fields. We may, however, start the computation of the force as soon as the recursion

reaches k = n/2. It is then possible to progressively overwrite the fields that have

already been used so that storage space for only n fields needs to be allocated.

Some additional space is required for the force F a
µ (x) and perhaps a set of auxiliary

arrays (such as those related to the Pauli term if O(a) improved Wilson fermions

are used). As discussed in ref. [3], it is also possible to trade memory space for more

computational work.

6.4 Numerical stability

Since the coefficients bl are alternating in sign and decreasing in magnitude, the

Clenshaw recursion is numerically safe in the whole range 0 ≤ y ≤ 1. Note that all

intermediate results are within reasonable limits, for any realistic choice of n and ǫ,

so that over- or underflow conditions will never be raised.

If standard 32 bit arithmetic is used for the computation of the fields χk and

Qψk, it is advisable to accumulate the sum (4.12) in double precision since the

terms are of the same sign and have similar size. In this way any numerical errors

should be pushed to the lower digits because the sum is significantly larger than the

individual terms, i.e. the relative accuracy of the final result is improved. Evidently

the differences bn−k − bn−k+2 of the coefficients that appear in eq. (6.5) should be

computed in double precision (cf. subsect. 2.3).
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7. Square root of Pn,ǫ(y)

In the global heatbath step, before the molecular dynamics equations are solved, the

PHMC algorithm makes use of the factorization

Pn,ǫ(y) = |An,ǫ(z)|2 , (7.1)

where An,ǫ(z) is another (possibly complex) polynomial in z [2,3]. Evidently such a

factorization can only exist if n is even, and we thus set

n = 2r, r ∈ Z, r ≥ 1, (7.2)

in the following.

To define the new polynomial explicitly, we start from the decomposition

Pn,ǫ(y) = 2n−1an

n
∏

k=1

(z − zk), (7.3)

zk = − cos(iω + 2kν), ν ≡ π

n + 1
. (7.4)

The roots in this formula occur in complex conjugate pairs, (zk)∗ = zn+1−k, and

any polynomial An,ǫ(z) that satisfies eq. (7.1) is thus obtained by selecting one of

the roots in each pair. For numerical purposes it is, however, not advisable to use

this representation. Instead the coefficients ck in the expansion

An,ǫ(z) = 1
2c0 +

r
∑

k=1

ckTk(z) (7.5)

should first be determined and after that one may apply the Clenshaw recursion to

evaluate the polynomial.

When selecting the roots, one should be careful to avoid that An,ǫ(z) will have a

rapidly oscillating phase. A good choice in this respect is the symmetric product

An,ǫ(z) = i(−1)r+12r− 1

2

√
an

r
∏

k=1

(z − z2k−1) (7.6)

whose asymptotic behaviour

An,ǫ(z) =
n→∞

1√
y

{

1 − iπ

2(n + 1)
· sinhω

z + cosh ω
+ O(n−2)

}

(7.7)
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can be worked out using the Euler summation formula.

The computation of the coefficients ck for this particular polynomial is discussed

in appendix A. It is shown there that they may be obtained recursively through

cr+1 = 0, cr = i(−1)r+1
√

2an, (7.8)

sin((2k + 1)ν)ck+1 + 2 sin(2kν) cosh(ω + iν)ck + sin((2k − 1)ν)ck−1 = 0, (7.9)

where k runs from r to 1. An important point to note here is that the sine factors in

the three terms of eq. (7.9) are practically the same when n is large. The recursion

is thus rather similar to the one satisfied by the Chebyshev polynomials, and it may

thus be expected to be stable.

Numerical studies confirm this and moreover demonstrate that the coefficients ck

are approximately exponentially decreasing in magnitude. Actually this is the case

for both the real and the imaginary parts separately, and they also have oscillating

sign. The series (7.5) can thus be accurately evaluated for all 0 ≤ y ≤ 1 using the

Clenshaw recursion.

8. Other polynomials

Most formulae in this note refer to a particular choice of the polynomial Pn,ǫ(y). In

practice other polynomials may be considered for special purposes. The procedures

that have been described are, however, of a general nature and are expected to be

applicable in all these cases too.

First note that the chosen polynomial can always be expanded in a series of the

form (3.7). While the coefficients ak in this expansion may not be analytically calcu-

lable, it is certainly possible to compute them numerically with sufficient precision,

perhaps using an algebraic manipulation program. Once they are known, the coeffi-

cients bn, bn−1, . . . , b1 may be obtained (in this order) by solving eq. (4.9) recursively.

The representation (4.12) can then be used to evaluate the force F a
µ (x) as before.

If a factorization of the form (7.1) is needed, there is probably no other way than

to select a suitable subset of the roots of Pn,ǫ(y). After that the coefficients ck in

the expansion (7.5) may be determined via the linear equations

1
2c0 +

r−1
∑

k=1

ckTk(wl) = −crTr(wl), l = 1, . . . , r, (8.1)
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for example, where wl are the chosen roots and the coefficient cr of the highest-degree

polynomial is assumed to be known at this point.

9. Related earlier work

The variation of a polynomial of the Wilson–Dirac operator has previously been

discussed by Liu [8] in his paper on the simulation of lattice QCD with Ginsparg–

Wilson fermions. In this case the polynomial approximates the sign function of the

hermitian Dirac operator and is expressed as a series of Legendre polynomials. Liu

then derives a fairly complicated formula for its variation that can also be written

in terms Legendre polynomials.

In the approach of de Forcrand and Takaishi [1], degenerate complex Chebyshev

polynomials are used to approximate the inverse of the Wilson–Dirac operator. The

polynomial that appears in the bosonic action is then automatically of the factorized

form and its variation can be obtained essentially by applying eq. (4.3) to one of

the factors (the other factor does not need to be considered in view of the reality

of the expression). All this is explained in a study of the JLQCD collaboration of

QCD with 2 + 1 flavours of dynamical quarks [9]. The recursion used in this paper

to evaluate the polynomials is the Horner scheme, which is the appropriate choice

for degenerate complex Chebyshev polynomials.

Recently similar methods have also been proposed for the simulation of staggered

fermions, where fractional powers of the square of the Dirac operator are approxi-

mated by real polynomials that are expanded in Chebyshev polynomials [10]. The

force is then again obtained by writing the polynomial as the square of another poly-

nomial and applying eq. (4.3) to one of the factors. All polynomials are evaluated

using the standard Clenshaw recursion in this case.

There appears to be no reference to the factorization (4.9) and the associated

representation (4.12) in any of these papers. An advantage of this representation is

that its numerical stability can be established analytically. On the other hand, for

the computation of the force one might also use the factorization discussed in sect. 7

and proceed as in ref. [10].
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Appendix A

To derive eq. (7.9) we introduce the phase factor g = e2iν and set

z = 1
2 (u + (1/u)), uk = −e−ωgk. (A.1)

The root factors then become

z − zk = 1
2 (1/u)(u − uk)(u − (1/uk)) (A.2)

so that

An,ǫ(z) ∝ u−r
r

∏

k=1

(u − u2k−1)(u − (1/u2k−1)). (A.3)

Since the roots uk only differ from each other by factors of g, it follows from this

that the polynomial satisfies

g
{

An,ǫ(z)
}

u→ug2
=

u − u−1

u − u−2
· u − (1/u0)

u − (1/u1)
An,ǫ(z) (A.4)

which may also be written in the form

[

u2g − (u−1 + (1/u0))u + g−2
]

{An,ǫ(z)
}

u→ug2
=

[

u2 − (u−1 + (1/u0))u + g−1
]

An,ǫ(z). (A.5)

Now if we substitute the series

An,ǫ(z) = 1
2

r
∑

k=−r

ckuk (A.6)

in this identity and collect the coefficients of the powers of u, a three-term recursion

for the coefficients ck is obtained that reduces to eq. (7.9) after some algebra.
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