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1. Introduction

Lattice QCD simulation algorithms require the SU(3) exponential function to be

evaluated very many times (at least four times per lattice point and update cycle).

As already noted by Morningstar and Peardon [1], the Cayley–Hamilton theorem

allows such matrix functions to be represented and computed economically.

In this note, the representation is worked out in some detail, the emphasis being

on its regularity properties and suitability for numerical purposes. An efficient and

numerically stable algorithm for the calculation of the exponential function and its

derivatives is then described.

2. The Cayley–Hamilton theorem

2.1 Characteristic equation

Let X be an element of the Lie algebra su(3) of SU(3) (see appendix A for the SU(3)

conventions used). Since X is traceless, the characteristic polynomial

det(λ−X) = λ3 − 1
2 tr(X

2)λ− detX (2.1)

depends on only two real parameters

t = − 1
2 tr(X

2), d = i detX. (2.2)

Both t and d are polynomial invariants of X, i.e. they are invariant under the adjoint

action X → UXU−1 of U ∈ SU(3).
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The Cayley–Hamilton theorem asserts that the matrix X satisfies the character-

istic equation

X3 + tX + id = 0. (2.3)

For diagonalizable matrices like X, the statement is nearly trivial, because the eigen-

values of X are the roots of the characteristic polynomial.

2.2 Range of the invariant parameters

In the following, a detailed understanding of the relation between X ∈ su(3) and

the invariant parameters t and d will be helpful.

Lemma 2.1. The image of su(3) in the plane of the parameters (2.2) is the closed

region defined by the inequalities

t ≥ 0, d2 ≤ 4
27 t

3. (2.4)

Proof: The eigenvalues ix1, ix2, ix3 of a given matrixX ∈ su(3) are purely imaginary

and may be ordered so that |x1| is greater or equal than the magnitude of the other

eigenvalues. Since X is traceless, there exists a real number r in the range 0 ≤ r ≤ 1

such that

x2 = −x1r, x3 = −x1(1− r). (2.5)

The parameters (2.2) are then given by

t = x2
1{1− r(1− r)}, d = x3

1r(1− r). (2.6)

In particular, t ≥ 0 and

d2 = t3
u2

(1− u)3
, (2.7)

where u = r(1− r). The right-hand side of this equation is monotonically increasing

with u and therefore assumes its maximum at the endpoint u = 1
4 of the range of u.

For all X ∈ su(3), the parameters t and d thus satisfy the bounds (2.4).

It remains to be shown that each point (t, d) in the domain (2.4) is related to the

eigenvalues of a matrix X ∈ su(3) through eqs. (2.5) and (2.6). If d = 0 the choice

x1 =
√
t, x2 = −x1, x3 = 0, (2.8)
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Fig. 1. Image of the ball ‖X‖2 ≤ 1 in the plane of the invariant parameters (2.2).

satisfies all conditions. In all other cases, there is a unique value of u ∈ [0, 1
4 ] such

that eq. (2.7) holds. One may then set

x1 = sign(d)

√

t

1− u
(2.9)

and define x2 and x3 through eq. (2.5), where r(1−r) = u. As can be easily verified,

this choice of x1, x2, x3 satisfies both (2.5) and (2.6).

With little additional work, one can show that t and d are in fact the only invari-

ants of X. A more complete statement is summarized by the following lemma.

Lemma 2.2. Up to permutations, the eigenvalues of X ∈ su(3) are uniquely deter-

mined by the invariants t and d. Moreover, X has degenerate eigenvalues if and only

if the point (t, d) is on the boundary of the domain (2.4).

Another useful result is

Lemma 2.3. The image in the (t, d)-plane of the set of all X ∈ su(3) with norm

‖X‖2 ≤ M is the domain characterized by the bounds (2.4) and the inequality

|d| ≤ M(M2 − t). (2.10)

Proof: Equation (2.6) implies x2
1 ≥ t and |d| = |x1|(x2

1−t). The Lemma then follows

from the fact that |x1| = ‖X‖2.

3



For illustration, the image of the ball ‖X‖2 ≤ 1 is shown in fig. 1. Lemma 2.3 implies

that ‖X‖2 is the unique solution x ≥
√
t of the equation x(x2 − t) = |d|. Explicitly,

‖X‖2 =

√

4t

3
cosφ, φ =

1

3
arccos ̺, ̺ =

√

27d2

4t3
(2.11)

(0 ≤ ̺ ≤ 1 in view of Lemma 2.1 and φ is consequently in the range 0 ≤ φ ≤ π/6).

3. Matrix functions

3.1 Cayley–Hamilton representation

Let f(λ) be an arbitrary function that is defined and holomorphic in an open neigh-

bourhood of the imaginary axis Reλ = 0 in the complex plane. For any X ∈ su(3),

a 3× 3 matrix f(X) may then be defined through

f(X) =

∮

dλ

2πi

f(λ)

λ−X
, (3.1)

where the integration contour encircles the spectral range ofX (see fig. 2). Evidently,

f(X)v = f(ζ)v (3.2)

if v is an eigenvector of X with eigenvalue ζ, i.e. the definition (3.1) coincides with

the usual definition of functions of a diagonalizable matrix.

Using the characteristic equation (2.3), it is now straightforward to check that

(λ−X)−1 = (λ2 + t+ λX +X2)(λ3 + tλ+ id)−1. (3.3)

When inserted in eq. (3.1), this leads to the representation

f(X) = f0 + f1X + f2X
2 (3.4)

where

fk =

∮

dλ

2πi

ρk
λ3 + tλ+ id

f(λ), {ρ0, ρ1, ρ2} = {λ2 + t, λ, 1}. (3.5)
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Fig. 2. The contour integral (3.1) runs around a loop in the complex λ-plane which

tightly encloses the spectral range of X.

Since the denominator in these integrals coincides with det(λ−X), the integration

contour avoids the poles of the integrand and the coefficients f0, f1, f2 are therefore

well-defined functions of t and d. Moreover, they extend to holomorphic functions

in a complex neighbourhood of the domain (2.4).

3.2 Alternative expressions for fk

The coefficients fk can be worked out in terms of the (purely imaginary) eigenvalues

λ1, λ2, λ3 of X. Noting

λ2 + t = 2
3 t+

1
3

∑

k<l

(λ− λk)(λ− λl), (3.6)

λ = 1
3

∑

k

(λ− λk), (3.7)

λ3 + tλ+ id = (λ− λ1)(λ− λ2)(λ− λ3), (3.8)

the integrands in eq. (3.5) can be reduced to pole terms with up to 3 poles. Using

the residue theorem, the integration over λ then leads to fully explicit expressions

for f0, f1 and f2. These expressions are however not manifestly regular if some of

the eigenvalues coincide and are therefore of limited use.
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When the Feynman parameter formula

1

r1r2 . . . rn
= Γ(n)

∫ 1

0

ds1 . . . dsn δ
(

1−∑

ksk
) 1

(
∑

kskrk)
n (3.9)

is first applied, one instead obtains the expressions

f0 = 1
3

∑

k

f(λk) +
2
3 tf2, (3.10)

f1 = 1
3

∑

k<l

∫ 1

0

ds1 f
′(s1λk + (1− s1)λl), (3.11)

f2 =

∫ 1

0

ds1

∫ 1−s1

0

ds2 f
′′(s1λ1 + s2λ2 + (1− s1 − s2)λ3). (3.12)

The integrals in these formulae run over the spectral range of X and are manifestly

singularity-free for all X.

3.3 Uniqueness of the Cayley–Hamilton representation

The presence of the singularities alluded to above is related to a non-uniqueness of

the Cayley–Hamilton representation as stated by the following lemma.

Lemma 3.1. For a fixed matrix X ∈ su(3), the coefficients f0, f1, f2 are uniquely

determined through eq. (3.4) if and only if the eigenvalues of X are non-degenerate.

Proof: Equation (3.4) is equivalent to the Vandermonde system

f(λk) = f0 + f1λk + f2λ
2
k, k = 1, 2, 3, (3.13)

where, as above, λ1, λ2, λ3 denote the eigenvalues of X. Such systems are known to

have a unique solution if and only if the eigenvalues are pairwise different.

The coefficients given by eq. (3.5) are a particular choice of f0, f1, f2, which is distin-

guished by the fact that the coefficients are continuous (actually even differentiable)

functions of t and d. With this additional requirement, the Cayley–Hamilton repre-

sentation becomes unique.
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4. Derivatives of matrix functions

Matrix functions f(X) are functions of the coordinates X1, . . . , X8 of X with values

in the space of complex 3 × 3 matrices (see appendix A). One is then interested in

the derivatives of f(X) with respect to the coordinates Xa.

4.1 Differentiation of the Cayley–Hamilton representation

If the associated partial differential operators are denoted by ∂a, the differentiation

of the Cayley–Hamilton representation (3.4) leads to the expression

∂af(X) = f1T
a + f2(T

aX +XT a) +
2

∑

k=0

∂afkX
k. (4.1)

Since fk depends onX only through the invariant parameters t and d, the derivatives

of the coefficients in these equations can be expressed through

fk,t =
∂fk
∂t

, fk,d =
∂fk
∂d

, (4.2)

Explicitly, they are given by

Y a∂afk = −tr{XY }fk,t + itr{X2Y }fk,d (4.3)

for all k = 0, 1, 2 and Y ∈ su(3).

4.2 Alternative expressions for fk,t and fk,d

Starting from the representation (3.5), it is straightforward to show that

f0,t = −df2,d, (4.4)

f1,t = −if0,d + itf2,d, (4.5)

f2,t = −if1,d. (4.6)

The coefficients fk,t are thus obtained algebraically once the other coefficients fk,d
are known.
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Similarly to fk, the derivatives of these coefficients can be represented through

integrals of the form

fk,d = 2
3δk0 tf2,d − i

∫ 1

0

ds1ds2ds3 δ(1− s1 − s2 − s3)

× ωk,d(s)f
(k+3)(s1λ1 + s2λ2 + s3λ3), (4.7)

where the weights ωk,d are given by

ω0,d = 1
3 , (4.8)

ω1,d = 1
3 (s1s2 + s2s3 + s3s1), (4.9)

ω2,d = s1s2s3. (4.10)

These expressions are singularity-free, but involve high-order derivatives of the func-

tion f(λ). Whether the differentiated Cayley–Hamilton representation is suitable for

numerical evaluation thus depends on the behaviour of these derivatives.

5. Computation of the SU(3) exponential function

In this section, the Cayley–Hamilton formalism is applied to the exponential function

f(λ) = eλ, the associated matrix function f(X) being the SU(3) exponential function

exp(X).

5.1 Numerical stability

Since the exponential function is differentiable and bounded along the imaginary

axis, the coefficients (3.5) are well-behaved. In particular, if, say,

‖X‖2 ≤ 1, (5.1)

there are no significant numerical cancellations in the Cayley–Hamilton representa-

tion (3.4). For larger matrices X the use of the latter may not be numerically safe,

but the exponential can in this case be computed by evaluating exp(X/2n) for some

sufficiently large integer n and squaring that matrix n times.
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5.2 Power series expansion

The matrix function associated to the polynomial

p(λ) =
N
∑

n=0

λn

n!
(5.2)

satisfies

‖ exp(X)− p(X)‖2 ≤ ‖X‖N+1
2

(N + 1)!
(5.3)

and thus provides an accurate approximation to the exponential function already

for moderate values of the degree N if ‖X‖2 ≤ 1.

Starting from eq. (2.3), the coefficients of the Cayley–Hamilton representation

p(X) = p0 + p1X + p2X
2 (5.4)

can be shown to be polynomials in the invariants t and d. Moreover, recalling the

regular expressions (3.10)–(3.12) and noting that the derivatives

p(ν)(λ) =

N−ν
∑

n=0

λn

n!
(5.5)

approximate the exponential function, it follows that the coefficients pk rapidly

converge to the exact coefficients fk of the exponential function when N → ∞. In

particular, the latter could, in this way, be computed to any desired accuracy.

5.3 Recursive computation of pk

The polynomial p(X) is best evaluated following the so-called Horner scheme (see

ref. [2], sect. 5.3, for example). This method generates a sequence qn(X) of polynom-

ials recursively according to

qN = cN , (5.6)

qn = Xqn+1 + cn, n = N − 1, N − 2, . . . , 0, (5.7)

where the coefficients cn are given by

cn =
1

n!
. (5.8)
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The last polynomial in the sequence, q0(X), then coincides with p(X).

Now if one passes to the Cayley–Hamilton representation

qn(X) = qn,0 + qn,1X + qn,2X
2, (5.9)

the recursion assumes the form

qN,0 = cN , qN,1 = qN,2 = 0, (5.10)

qn,0 = cn − idqn+1,2,

qn,1 = qn+1,0 − tqn+1,2,

qn,2 = qn+1,1, n = N − 1, N − 2, . . . , 0, (5.11)

and the desired coefficients are then

pk = q0,k, k = 0, 1, 2. (5.12)

Note that the coefficients qn,k are complex. Each step of the recursion thus requires

4 multiplications, 3 additions and a few register moves.

5.4 Choice of the degree N

If an ISO C compiler and double-precision arithmetic are used, and if X and N are

such that

‖X‖N+1
2

(N + 1)!
≤ DBL EPSILON, (5.13)

the exponential exp(X) is obtained to machine precision (DBL EPSILON is a C macro

defined in the standard include file float.h). On machines complying with the

IEEE 754 standard for double-precision (64 bit) data and arithmetic, the bound

(5.13) holds for all X satisfying ‖X‖2 ≤ 1 if N = 17.
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6. Differential of the SU(3) exponential function

The derivative of the exponential function in direction Y ∈ su(3) is defined by

dY e
X =

d

dh
eX+hY

∣

∣

∣

∣

h=0

(6.1)

or equivalently through

dY e
X = Y a ∂ e

X

∂Xa
. (6.2)

As will become clear below, the product

Z(X,Y ) = e−XdY e
X (6.3)

is an su(3)-valued linear function of Y , which satisfies

(

dY e
X
)

e−X = Z(−X,Y ), (6.4)

‖Z(X,Y )‖2 ≤ ‖Y ‖2, (6.5)

for all X,Y ∈ su(3).

6.1 Integral representation and series expansion

Partial integration shows that

∫ 1

0

ds e(1−s)XhY es(X+hY ) = eX+hY − eX (6.6)

and differentiation with respect to h then leads to the integral representation

dY e
X =

∫ 1

0

ds e(1−s)XY esX . (6.7)

The properties (6.4) and (6.5) of the differential Z(X,Y ) are an immediate conse-

quence of this representation and the fact that ‖esX‖2 = 1.

Multiplying X by a real parameter r and expanding the expression on the right

of eq. (6.7) in its Taylor series at r = 0 yields the series

dY e
X =

N−1
∑

n=0

1

(n+ 1)!

n
∑

k=0

XkY Xn−k + rN (X,Y ) (6.8)
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at r = 1, the remainder being bounded by

‖rN (X,Y )‖2 ≤ ‖X‖N2
N !

‖Y ‖2. (6.9)

The expansion (6.8) is thus rapidly convergent and therefore suitable for numerical

evaluation.

The series actually coincides with the derivative Y a∂ap(X) of the polynomial p(X)

introduced in subsect. 5.2, which approximates the exponential function exp(X).

Following the lines of sect. 4, the derivatives of the SU(3) exponential function can

thus be obtained by differentiating the Cayley–Hamilton representation (5.4) of the

polynomial p(X).

6.2 Recursive computation of the coefficients pk,d

Recalling the discussion in sect. 4, the derivatives of the polynomial p(X) are given

by

Y a∂ap(X) = p1Y + p2(XY + Y X)

−
2

∑

k=0

{

tr(XY )pk,t + Im tr(X2Y )pk,d
}

Xk. (6.10)

Since the coefficients pk,t are related to pk,d through eqs. (4.4)–(4.6), it suffices to

compute the latter.

A recursion producing these derivatives of the coefficients pk is obtained by dif-

ferentiating eqs. (5.10),(5.11) with respect to d. Explicitly, setting

rn,k =
∂qn,k
∂d

, (6.11)

the differentiated recursion relations are

rN,0 = rN,1 = rN,2 = 0, (6.12)

rn,0 = −iqn+1,2 − idrn+1,2,

rn,1 = rn+1,0 − trn+1,2,

rn,2 = rn+1,1, n = N − 1, N − 2, . . . , 0. (6.13)
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Since the coefficients qn+1,2 appear in these equations, the recursion (5.11) must be

solved simultaneously and the process then yields both pk = q0,k and pk,d = r0,k.

6.3 Miscellaneous remarks

If the derivatives dY e
X are to be computed to machine precision, N and X must be

such that

‖X‖N2
N !

≤ DBL EPSILON, (6.14)

i.e. the degree N must be increased by 1 with respect to the one required in the case

of the exponential function. Most of the computer time spent for the evaluation of

the derivatives of the exponential function is however consumed by the 3× 3 matrix

operations in eq. (6.10).

If X has norm larger than 1, say 2n−1 < ‖X‖2 ≤ 2n, repeated application of the

identity

Z(X,Y ) =
1

2

{

Z(X/2, Y ) + U−1Z(X/2, Y )U
}

, U = exp(X/2), (6.15)

allows Z(X,Y ) to be expressed through Z(X/2n, Y ) at the expense of 3n− 1 addi-

tional 3× 3 matrix products.

Appendix A

A.1 Group generators

The Lie algebra su(3) of SU(3) may be identified with the space of all anti-Hermitian

traceless 3× 3 matrices. With respect to a basis T a, a = 1, . . . , 8, of such matrices,

the elements X ∈ su(3) are given by

X = XaT a, (A.1)

where (X1, . . . , X8) ∈ R
8 (repeated group indices are automatically summed over).

The generators T a are assumed to satisfy the normalization condition

tr{T aT b} = − 1
2δ

ab. (A.2)
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The structure of the Lie algebra is then encoded in the commutators

[T a, T b] = fabcT c, (A.3)

while the completeness of the generators implies

{T a, T b} = − 1
3δ

ab + idabcT c, (A.4)

T a
αβT

a
γδ = − 1

2

{

δαδδβγ − 1
3δαβδγδ

}

. (A.5)

It follows from these equations that the structure constants fabc and the tensor dabc

are both real. Moreover, fabc is totally anti-symmetric in the indices and dabc totally

symmetric and traceless.

A.2 Matrix norms

The natural scalar product in su(3) is

(X,Y ) = XaY a = −2 tr{XY }. (A.6)

In particular, ‖X‖ = (X,X)1/2 is a possible definition of the norm of X ∈ su(3).

Another useful matrix norm derives from the square norm

‖v‖2 = {|v1|2 + |v2|2 + |v3|2}1/2 (A.7)

of complex colour vectors v. If A is any complex 3× 3 matrix, one defines

‖A‖2 = max
‖v‖2=1

‖Av‖2. (A.8)

This norm satisfies

‖A+B‖2 ≤ ‖A‖2 + ‖B‖2, ‖AB‖2 ≤ ‖A‖2‖B‖2, (A.9)

for all matrices A,B. Moreover, if A is Hermitian or anti-Hermitian, ‖A‖2 is equal

to the maximum of the absolute values of its eigenvalues.
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