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Neutrinos produced through e+ p→ n+ νe are left–handed

momentumspin

i.e. they are chiral
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Infinitesimal chiral transformations

ψ → ψ + εδψ, δψ ≡ γ5ψ

preserve the (massless) Dirac equation

Dψ = 0, D ≡ γµ∂µ

Left-handed spin 1
2 particles are described by fields satisfying

γ5ψ = −ψ

i.e.

P+ψ = 0, P± ≡ 1
2(1± γ5)
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Two-component formulation

γµ =
(

0 σµ
σ†µ 0

)
, γ5 =

(
1 0
0 −1

)
“chiral” representation

γ5ψ = −ψ, Dψ = 0 ⇔ ψ =
(

0
χ

)
, σµ∂µχ = 0

Also referred to as Weyl fermions
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Coupling to gauge fields

ψAα, A = 1, . . . , 4 Dirac index

α = 1, . . . , N “flavour” index

Flavour symmetry group G

ψ → R(Λ)ψ, Λ ∈ G

Gauge field & gauge-covariant differential operators

Aµ = AaµT
a, Dµψ =

{
∂µ +AaµR(T a)

}
ψ
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“Pure” chiral gauge theories

Euclidean action

S =
∫

d4x

{
− 1

2g2
tr [Fµν(x)Fµν(x)] + ψ(x)γµDµψ(x)

}
where

P+ψ = 0, ψP− = 0, Fµν ≡ ∂µAν − ∂νAµ + [Aµ, Aν]

• Form dictated by gauge invariance & power counting

• Charge conjugation maps right- to left-handed fermions
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At the quantum level, these theories appear to be rather artificial

? gauge anomaly

? global topological obstructions

? difficult to put on a lattice

Actually inconsistent unless G and R satisfy certain conditions
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⇒ perturbative calculations are difficult

νµ

µ

e
γ

W

W

eν

and we know nearly nothing about the non-perturbative

properties of these theories
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Fundamental issues

Are chiral gauge theories consistent beyond

perturbation theory ?

Can they be put on a lattice (or be regularized otherwise)

without breaking the gauge symmetry ?

Is there a natural way in which chiral fermions

can arise ?
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A little history, necessarily incomplete

1981 Nielsen–Ninomiya theorem

1982 Ginsparg–Wilson relation

γ5D +Dγ5 = aDγ5D

1983 Chiral fermions from 4+1 dimensions

Relation to descent equations

1992 Lattice domain-wall fermions

1998 Perfect lattice Dirac operator

Neuberger–Dirac operator

Exact index theorem & chiral symmetry

1999 Chiral lattice gauge theories

Local cohomology, global anomalies

Nielsen, Ninomiya
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Topics covered in the lectures

? Algebraic & topological aspects of the gauge

anomaly — an old subject!

? Local cohomology on the lattice

? Lattice fermions & the Ginsparg–Wilson

relation

? Chiral lattice gauge theories

M.L., Erice Lectures 2000, hep-th/0102028
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Gauge anomaly

Effective action in a classical background field

e−Seff[A] =
∫

D[ψ]LD[ψ]L e−
R

d4xψγµDµψ

Induced gauge current

jaµ ≡
δSeff

δAaµ
=

〈
ψγµR(T a)ψ

〉
δAµ = ∂µω + [Aµ, ω] ≡ Dµω ⇒ δSeff =

∫
d4xDµω

a(x)jaµ(x)

Seff is gauge-invariant ⇔ jµ is gauge-covariant and Dµjµ = 0
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Seff generates the fermion one-loop diagrams

Seff = −
∞∑
n=0

1
n!

∫
d4p1

(2π)4
. . .

d4pn
(2π)4

(2π)4δ(p1 + . . .+ pn)

×V (n)(p1, . . . , pn)a1...an
µ1...µn

Ãa1
µ1

(p1) . . . Ãanµn(pn)

V (n) = + . . .
= −iγµpµ

p2
P+

= γµR(T a)
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Power counting implies that Seff is well-defined up to

Seff → Seff +
∫

d4xΩ(x)

↑
local polynomial in Aµ, ∂µAν, . . . of dimension ≤ 4

To compute Seff one can use a momentum cutoff

1
p2
→ 1

p2
− 1
p2 + Λ2

,

for example, or a proper time representation

H. Leutwyler, Phys. Lett. B152 (1985) 78
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A detailed calculation yields

δSeff =
i

192π2

∫
d4x εµνρσd

abc
R ωa

{
∂µA

b
ν∂ρA

c
σ + 1

2∂µ
(
AbνF

c
ρσ

)}
+

∫
d4x δΩ(x)

dabcR ≡ 2i tr
{
R(T a)R(T b)R(T c) + (b↔ c)

}

Gauge invariance can be preserved ⇔ dabcR = 0
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Anomaly-free representations

Gauge group U(1)

There is only one generator and

R(T 1) = i× diag(e1, . . . , eN), d111
R = 4

N∑
α=1

e3
α

For example, e1 = . . . = e8 = 1, e9 = −2, is anomaly-free

Real & pseudo-real representations

These are all anomaly-free

G = SU(2) has only such representations and is therefore “safe”
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Gauge group SU(n), n ≥ 3

For any representation R we have

dabcR = cR × dabc
↑

d–symbol in the fundamental representation

To compute cR it suffices to consider a single generator

T = i× diag(1, . . . , 1, 1− n), cR = tr{R(T )3}/tr{T 3}

Example:

The fermions in the standard SU(5) GUT are in the anomaly-free

representation R = 5∗ ⊕ 10 Georgi & Glashow 1974
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Topological interpretation

Recall

δSeff =
i

192π2

∫
d4x εµνρσd

abc
R ωa

{
∂µA

b
ν∂ρA

c
σ + 1

2∂µ
(
AbνF

c
ρσ

)}
This expression is reminiscent of the second Chern character

ch2 ∝ εµνρσF
a
µνF

a
ρσ

but

• the algebraic structure is different

• and it depends on ω ⇒ the anomaly is a local obstruction
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In the following consider

? gauge group G = SU(n), n ≥ 3

? fundamental representation R

All other simple groups are actually safe
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Descent equations Stora ’76, Zumino ’83

d = 6 : Chern character

↓ tr{F 3} = dQ0
5

d = 5 : Chern-Simons term

↓ δωQ
0
5 = dQ1

4

d = 4 : gauge anomaly

A = Aµdxµ, F = 1
2Fµνdxµdxν gauge potential, field strength

δωA = dω + [A,ω] gauge variation

Q0
5 = tr{A(dA)2 + 3

2A
3dA+ 3

5A
5} Chern-Simons term

Q1
4 = tr{ωd[AdA+ 1

2A
3]} gauge anomaly
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Gauge anomaly ⇔ non-trivial bundles on S2 × S4

Alvarez-Gaumé & Ginsparg ’84

• g(ϕ, x) : S1 × S4 → SU(n) defines

a principal bundle on S2 × S4

• This bundle can be non-trivial

since π5(SU(n)) = Z

F = dA+A2 (in 6 dimensions)∫
S2×S4

ch3 = − i

48π3

∫
S2×S4

tr{F3} ∈ Z

g(  ,x)

ϕ

ϕ
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The closed gauge curve

Ag = g−1Ag + g−1dg, 0 ≤ ϕ ≤ 2π

defines a gauge connection on the equator of S2 × S4

Choosing any extension of Ag to the bundle one finds

∆Seff ≡
∫ 2π

0

dϕ
∂Seff

∂ϕ
= 2πi

∫
S2×S4

ch3

• ImSeff is multi-valued

• ⇒ anomaly cannot be removed

• Topological obstruction ⇔ π2(A/G) 6= 0

A

A/G
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Summary

? Gauge anomaly ↔ ch3

? Topology of field space matters

? Quantization must take this into account
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