Wilson quarks and the Banks–Casher relation

Martin Lüscher & Leonardo Giusti, CERN Physics Department

Perspectives and challenges for full QCD lattice calculations ECT Trento, 5.–9. May 2008

Banks–Casher relation

The chiral condensate in QCD is given by

$$\Sigma = \lim_{m \to 0} \lim_{V \to \infty} \langle \bar{u}u \rangle = \pi \rho(0,0)$$

where $\rho(\lambda,m)$ is the spectral density of the Dirac operator Banks & Casher '80

On the lattice

- the relation remains valid if chiral symmetry is preserved
- may in principle be used to compute the condensate

くぼう くほう くほう

How about Wilson quarks?

Spectrum of the hermitian Wilson–Dirac operator $\gamma_5 D_m$ on a 48×24^3 lattice

M.L. '07 [JHEP 0707 (2007) 081]

- Renormalization of spectral observables
- **2** O(a)-improved Wilson theory
- Ohpt and finite-volume effects
- Ounting low modes on large lattices
- O Numerical studies

• • = • • = •

Renormalization of spectral observables

First consider the continuum theory

$$D_m\psi = (m+i\lambda)\psi$$

$$D_m^{\dagger} D_m \psi = \alpha \psi, \qquad \alpha = m^2 + \lambda^2$$

Average no of eigenstates of $D_m^{\dagger} D_m$ with $\alpha \leq M^2$

$$\nu(M,m) = V \int_{-\Lambda}^{\Lambda} \mathrm{d}\lambda \,\rho(\lambda,m), \qquad M^2 = m^2 + \Lambda^2$$

Is this a renormalizable quantity?

Del Debbio, Giusti, M.L., Petronzio & Tantalo '06

くぼう くほう くほう

Consider the spectral sums

$$\sigma_k(\mu, m) = \left\langle \operatorname{Tr}\left\{ \left(D_m^{\dagger} D_m + \mu^2 \right)^{-k} \right\} \right\rangle$$

$$= \int_0^\infty \mathrm{d}M \,\nu(M,m) \frac{2kM}{(M^2 + \mu^2)^{k+1}}$$

 \bigstar Well-defined if $\mu^2>0$ and $k\geq 3$

- ★ For fixed k, the relation $\nu(M,m) \leftrightarrow \sigma_k(\mu,m)$ is invertible
- ★ It is therefore sufficient to understand the renormalization of $\sigma_k(\mu, m)$

Note that

$$(D_m^{\dagger} D_m + \mu^2)^{-1}$$

is the square of the quark propagator in tmQCD

 \Rightarrow introduce N doublets of twisted-mass valence quarks

$$S_{\text{val}} = \int d^4x \sum_{n=1}^{N} \overline{\psi}_n(x) (D_m + i\mu\gamma_5\tau^3) \psi_n(x)$$

$$P_{ij}^{\pm} = \overline{\psi}_i \gamma_5 \tau^{\pm} \psi_j$$

$$\sigma_3(\mu, m) = -\int d^4x_1 \dots d^4x_6 \times$$

$$\langle P_{12}^+(x_1) P_{23}^-(x_2) P_{34}^+(x_3) P_{45}^-(x_4) P_{56}^+(x_5) P_{61}^-(x_6) \rangle$$

くぼう くほう くほう

The partially quenched theory is renormalized through

$$m_{\rm R} = Z_{\rm P}^{-1}m, \qquad \mu_{\rm R} = Z_{\rm P}^{-1}\mu, \qquad (P_{ij}^{\pm})_{\rm R} = Z_{\rm P}P_{ij}^{\pm}$$

Short-distance singularities

$$P_{ij}^+(x)P_{jk}^-(y) \underset{x \to y}{\sim} |x-y|^{-3}S_{ik}^{+-}(y)$$

are integrable and the total degree of divergence is negative if $k \geq 3$

Renormalized spectral sums and mode number

$$Z_{\rm P}^{2k}\sigma_k(Z_{\rm P}\mu_{\rm R}, Z_{\rm P}m_{\rm R}) = Z_{\rm P}^{-2} \int_0^\infty \mathrm{d}M\,\nu(M, Z_{\rm P}m_{\rm R}) \frac{2kM}{\left(\underbrace{Z_{\rm P}^{-2}M^2 + \mu_{\rm R}^2}_{M_{\rm R}^2}\right)^{k+1}}$$
$$\nu_{\rm R}(M_{\rm R}, m_{\rm R}) = \nu(Z_{\rm P}M_{\rm R}, Z_{\rm P}m_{\rm R})$$

イロト 不得 トイヨト イヨト

э

O(a)-improved Wilson theory

Consider the hermitian eigenproblem

$$D_m^{\ \dagger} D_m \psi = \alpha \psi$$

$$u(M, m_{\rm q}) = \left< \text{No of eigenvectors with } \alpha \leq M^2 \right>, \qquad m_{\rm q} = m_0 - m_{\rm c}$$

Define spectral sums and introduce twisted-mass valence quarks

$$\sigma_k(\mu, m) = \left\langle \operatorname{Tr}\left\{ \left(D_m^{\dagger} D_m + \mu^2 \right)^{-k} \right\} \right\rangle$$
$$= \int_0^\infty \mathrm{d}M \,\nu(M, m_q) \frac{2kM}{(M^2 + \mu^2)^{k+1}}$$
$$\sigma_3(\mu, m) = -a^{24} \sum_{x_1, \dots, x_6} \left\langle P_{12}^+(x_1) P_{23}^-(x_2) \dots P_{56}^+(x_5) P_{61}^-(x_6) \right\rangle$$

ECT Trento, 5.-9. May 2008

O(a)-improvement & renormalization

$$m_{
m R}=Z_m(1+b_mam_{
m q})m_{
m q}=rac{Z_{
m A}(1+b_{
m A}am_{
m q})}{Z_{
m P}(1+b_{
m P}am_{
m q})}m, \quad m:$$
 PCAC quark mass $\mu_{
m R}=Z_\mu(1+b_\mu am_{
m q})\mu$

$$(P_{ij}^{\pm})_{\mathrm{R}} = Z_{\mathrm{P}}(1 + b_{\mathrm{P}}am_{\mathrm{q}})P_{ij}^{\pm}$$

\Rightarrow renormalized spectral sums

$$\left(Z_{\rm P}\underbrace{\frac{1+b_{\rm P}am_{\rm q}}{1+b_{\rm PP}am_{\rm q}}}\right)^{2k}\sigma_k(\mu,m_{\rm q}) \quad \text{where} \quad \mu=\mu(\mu_{\rm R},m_{\rm R}), \ \dots$$

short-distance correction

イロト イヨト イヨト イヨト

Differentiating with respect to μ , it can be shown that

$$Z_{\mu}Z_{\rm P} = 1, \qquad b_{\mu} + b_{\rm P} - b_{\rm PP} = 0$$
$$Z_{\rm P}\frac{1 + b_{\rm P}am_{\rm q}}{1 + b_{\rm PP}am_{\rm q}} = \frac{1}{Z_{\mu}(1 + b_{\mu}am_{\rm q})} + O(a^2)$$

⇒ up to $O(a^2)$ terms, the renormalized mode number is given by $\nu_R(M_R, m_R) = \nu(M, m_q)$ where $M_R = Z_\mu (1 + b_\mu a m_q) M$, $m_R = Z_m (1 + b_m a m_q) m_q$

Note: $b_{\mu} = -\frac{1}{2} - 0.11 \times g_0^2 + \ldots$ [Frezzotti, Weisz & Sint '01]

ECT Trento, 5.-9. May 2008

O(a)-improved Wilson theory

Chiral perturbation theory

In the continuum limit and for $V \to \infty$

$$\nu(M,m) = \frac{2}{\pi}\Lambda\Sigma V \left\{ 1 + \frac{M_{\pi}^2}{32\pi^2 F_{\pi}^2} \left[3\bar{l}_6 + 3\ln\left(\frac{m_{\text{phys}}}{\Lambda}\right) + 2\ln 2 - \frac{\pi}{2}\frac{m}{\Lambda} \right] + \dots \right\}$$
(where $M^2 = m^2 + \Lambda^2$)

Smilga & Stern '93; Osborn, Toublan & Verbaarschot '99; M.L. & L.G. '08

- The 1-loop correction vanishes when $m \rightarrow 0$
- Expected to be fairly small (a few % perhaps) at $M_{\pi} < 300 \; {\rm MeV}, \; \Lambda = 50 - 100 \; {\rm MeV}$

D

通 ト イ ヨ ト イ ヨ ト

At small m and moderate Λ

$$\Sigma_{\rm eff}(M,m) = rac{\pi}{2} \, rac{
u(M,m)}{\Lambda V}$$

should thus be a good approximation to $\boldsymbol{\Sigma}$

NLO ChPT also suggests that the finite-volume effects

$$\frac{\Sigma_{\text{eff}}}{\Sigma_{\text{eff}}|_{V=\infty}} - 1 \sim e^{-\frac{1}{2}M_{\Lambda}L}, \qquad M_{\Lambda}^2 = \frac{\Lambda}{m}M_{\pi}^2$$

are negligible (a fraction of a percent) in the p-regime

通 ト イ ヨ ト イ ヨ ト

When $\Lambda \Sigma V$ is not very large, there could be important threshold effects

 $\Rightarrow \Sigma_{\text{eff}}$ underestimates Σ by 4.5% in this case

 \Rightarrow large lattices and $(p + \epsilon)$ -regime ChPT

How to count the low modes

Need a robust method that scales well with the lattice volume

$$P_M = \theta (M^2 - {D_m}^\dagger D_m) = \text{projector to the low modes}$$

 $\mathcal{O}[U] = \mathrm{Tr}\{P_M\}$

 $\nu(M,m_{\rm q}) = \langle \mathcal{O} \rangle$

- \star Relative statistical error scales like $V^{-1/2}$
- ★ However, reliably calculating O(V) eigenvalues may not be practical

通 ト イヨ ト イヨ ト

Stochastic method

$$\begin{split} \eta(x): \text{ gaussian random spinor field,} \qquad \langle (\eta, \eta) \rangle &= 12V \\ \nu(M, m_{\rm q}) &= \langle \widehat{\mathcal{O}} \rangle, \qquad \widehat{\mathcal{O}}[U, \eta] = (\eta, P_M \eta) \\ \mathrm{var}(\widehat{\mathcal{O}}) &= \mathrm{var}(\mathcal{O}) + \nu(M, m_{\rm q}) \end{split}$$

 \Rightarrow the relative error still scales like $V^{-1/2}$

For the computation of

$$P_M \eta = \theta (M^2 - D_m^{\dagger} D_m) \eta$$

one may use a rational approximation to the θ -function

伺い イヨン イヨン ニヨ

Define:

$$X = \frac{D_m^{\dagger} D_m - M^2}{D_m^{\dagger} D_m + M^2}$$

$$h(X) = \frac{1}{2} \{ 1 - XP(X^2) \}$$

where $P(X^2) = \text{polynomial}$ approximation to $(X^2)^{-1/2}$

$$\Rightarrow h(X)^4 \simeq \theta(M^2 - D_m^{\dagger} D_m)$$

Note:

Shape is independent of $V \Rightarrow$ total effort $\propto V$

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Numerical studies

Using samples of **80** configurations of the CERN–TorVergata ensembles Del Debbio, Giusti, M.L., Petronzio & Tantalo '07-'08

Lattice parameters

$$64 \times 32^3$$
 lattice, $\beta = 5.3$, $c_{\rm sw} = 1.90952$, $N_f = 2$

$$a = 0.0784(10)$$
 fm, $L = 2.51(3)$ fm

Renormalization factors

$$Z_{\rm A} = 0.75(1), Z_{\rm P}^{-1} = 1.84(3)$$
 (lattice $\rightarrow \overline{\rm MS}$ at 2 GeV)

Della Morte et al. [ALPHA Collab.] '05

イロト 不得 ト イヨト イヨト

$\Lambda_{\rm R}$	$m_{ m R}$	$M_{ m R}$	$ u_{ m R}(M_{ m R},m_{ m R})$	$(\Sigma_{\rm eff})^{1/3}$
100	44.1(9)	109.3(4)	75.0(9)(16)	282(4)
	25.3(6)	103.2(1)	68.3(9)(14)	273(4)
	12.4(3)	100.8(1)	65.4(8)(14)	269(4)
70	44.1(9)	82.7(5)	46.8(7)(10)	271(4)
	25.3(6)	74.4(2)	44.1(7)(9)	266(4)
	12.4(3)	71.1(1)	42.3(6)(9)	262(4)

All masses are renormalized in the $\overline{\rm MS}$ scheme at 2 GeV and are given in MeV

May be compared with the $N_f = 2$ JLQCD result

 $\Sigma^{1/3} = 251(7)(11) \text{ MeV}$ Fukaya et al. '07

extracted from the lowest eigenvalues of the Dirac operator in the ϵ -regime

As usual there are

- * finite-volume (including threshold) effects
- higher-order chiral corrections
- lattice-spacing effects
- that must be studied and eventually "extrapolated away"
- \Rightarrow a larger range of lattices will need to be considered

Conclusions

Spectral projectors provide a new opportunity to study the chiral regime of QCD

- ★ Chiral condensate
- ★ Ward identities ($\rightarrow Z_{\rm A}, Z_{\rm S}/Z_{\rm P}$)
- ★ Topological susceptibility, other low-energy constants, ...

Theoretically clean, moderate effort, small statistical errors, scales favourably

Matching with ChPT may require $(\epsilon + p)$ -regime calculations