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Motivation
Uses of perturbation theory in lattice QCD

e Parameter matching at high energies

anrs(9) = a(q) + kia(q)? + kaa(q)® + . ..
~10% o~ 1%

e O(a) improvement
Mgy = {[L+ bmtr(aMo)] My + bradg } — gtr{...}

+ %rm{[l + dmtr(aMy)|tr My + dmtr(aMg)}

b =—3+0(g2),  bm=0(gp), etc.



Lattice Feynman rules and many observables of interest are very complicated!

Numerical stochastic perturbation theory? Di Renzo et al. '94

* Fully automated numerical approach
* Effort tends to grow slowly with the loop order

* But: systematic & statistical errors

Recent developments: NSPT with SF bc, ISPT, HSPT

Brambilla et al. '13, Dalla Brida & Hesse '13, M.L. '14, Dalla Brida, Kennedy & Garofalo '15

Not discussed here: very-high-order computations, renomalons, resurgence

Bali, Bauer & Pineda '14



Outline

Numerical stochastic perturbation theory

e Standard NSPT

e Instantaneous stochastic perturbation theory

Taking the continuum limit ...
e How does ISPT scale in this limit?
e Power-divergent statistical errors

e Another Langevin miracle



NSPT recap

For simplicity, consider

S=a'), {;auso(x)auso(x) + 5 m? + om?)p(a)? + i(;w(w)4}

o0

om? = Z((SmZ)(k)gg :  additive mass counterterm
k=1

Simulation based on Langevin equation

0S
O = —% +n

(n(t, 2)n(s,y))y = 207"y 0(t — 5)

(p(@1). - p(an)) = (@t 21) ... (t, n))y



Stochastic perturbation theory Parisi & Wu '81
o0

¢=>_ gbox
k=0

Do = (A —m?)go +1

Brp1 = (A —m?)g1 — (6m*) Mg — %67
etc.

In frequency-momentum space

o = ——0 = (P> 4+ m? —iw) 1w, p)

AN~



NSPT Di Renzo et al. '94

e Choose a finite lattice of size T x L3 with some boundary conditions
e Integrate equations for ¢g, ¢1, ... numerically with random initial values
e Replace average over n by time average

<§0(‘T1) S @(z"»order gg

N

1 . . _
= = Y {BUAL T GG ) farger gt + ON )
j=1
e Extrapolate results to vanishing integration step size ¢

Main technical difficulties:

Extrapolation in ¢, autocorrelations grow o< 1/a2, -



ISPT ML '14

Again

¢=>_ giox

=0

but with

do = —0 = (p*+m?) "2 (p)

1
gZS—l 1 1 1
1—2—D—O+24%—©+8%—01

given instantaneously by Gaussian random fields 7o (z),n1 (), . . .

=> No autocorrelations and no integration errors!



ISPT in lattice QCD

Gauge potential, gauge fixing, etc. as usual

Expansion of the gauge potential

-

1 1 1 1
—SMEME/\/\/O LJ\AEME/V\/Q -1 Wj—i\ﬂﬂ oo
0 i 2N *

Az(z’) = vW\O +

o\

“x1(x), b= X1 (x), X1, X2, .. = pseudo-fermion noises



There are many more vertices than in continuum QCD

- LT

measure "irrelevant"

=> Large number of tree diagrams

However
e Nothing is done by hand
e 2nd order is already interesting

e May organize computations efficiently

Order

No. of diagrams

00~ O U W N

1

10

19

141
489
3524
16851
127143
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Does ISPT work out in practice?
Consider pure SU(3) gauge theory
L* lattice with Schrodinger-functional boundary conditions
Compute running coupling Fritzsch & Ramos '13
G%(q) = const x t* (E(t,®))yo=r/2,v/Bim0.3xr 3t €= 1/V/8t
E(t,x) : YM action density at gradient-flow time ¢
In perturbation theory

(E) = Eogg + Erg) + Eog§ + ...

= ays(q) = alq) + kia(q)? + k2a(q)® + . ..
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Computation of tree diagrams is cheaper than the measurement of Ey, E1, F»

24

However
A priori statistical error of 2E),
-3
4%10 B s s T T
*
® k=0 3
x10°- | @ k=l .
* k=2 ~1/a®, p21
*
2x10° S -
1x10°” e
X101 $ e ° N
[ :: ] n '
L ' 4
0 \ \ \ Ll
4 8 12 16 20
L/a
Same behaviour is observed in the ¢* theory  Dalla Brida,

Kennedy & Garofalo '15
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Statistical variances are not guaranteed to be free of power divergences!
k

Z((bk,j(x)@(y)) = (0(2)P(¥))order g& logarithmically divergent
j=0

but

(¢1(2)91(y)) = 21*4% + i—é— + «++ quadratically divergent

missing

=> The continuum limit is difficult to reach beyond the lowest orders in gg
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How about NSPT?

The power counting is different in this case

(@1(t,2)01(5,9)) = + —4—— +

2

.t 4 L «Q»} = log divergent

2

—— = (P i)

_ [(ﬁ2+m2)2 +w2]71

Actually, all correlation functions of ¢, ¢1, ... are only logarithmically divergent!
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Proof of the absence of power divergences

The Langevin equation has the form

Doo=1n, D=0 —A+m?

Doy, =Ry, forall k> 1

where
k—1 k—1
(k—
Ri=— Z(5m 5D — 5 Z Ok g1 +ja+is+1951 Pir Pis -
Jj=0 Jl;j27j3:0

Would like to show that the correlation functions

<¢)k1 (tlvxl) s ¢kn (tn7$n)>

are at most logarithmically divergent
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Functional integral in 5d Zinn-Justin '86

Add Lagrange-multiplier fields Lo(t, ), L1(t, ), ..., L,(t, x)

(Pky -+ D) Z/ [®o] - ¢n]D[Lo] ... D[Ln]e Sp, ...

S = /dta“g:{Lo(D(bo — Lo) + ;:Lk(%k - Rk)}

Power counting shows that
e Theory is renormalizable
e Power divergences can be canceled by the counterterms

/dta4z Z ki Ly, Crj X 1/a®

r k>j=0

stm
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However, the fixed-order two-point functions
k

D bk (t,2)ds(s,9))

j=0
are known to be only logarithmically divergent
= The contributions of the counterterms must cancel in these functions

= The coefficients cy; can recursively be shown to vanish

=> There are in fact no power divergences!
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Conclusions

NSPT
Pros:
Suitable for high-order computations

Statistical errors scale well

Cons:
Autocorrelations grow like 1/a?

Integration step size errors

Future:

Replace Langevin by HMC or SMD

ISPT
Pros:
Exact simulation

No autocorrelations

Cons:
Power-divergent statistical errors
Purely diagrammatic approach, little
theoretical control

Future:

Try to get rid of power divergences
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