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Martin Lüscher, CERN Physics Department

Fundamental parameters from lattice QCD, MITP, Mainz 31.8.-11.9. 2015

1



Motivation

Uses of perturbation theory in lattice QCD

• Parameter matching at high energies

αMS(q) = α(q) + k1α(q)2 + k2α(q)3 + . . .

∼ 10% ∼ 1%

• O(a) improvement

M̃q =
{

[1 + b̄mtr(aMq)]Mq + bmaM
2
q

}
− 1

3 tr
{
. . .
}

+ 1
3rm

{
[1 + d̄mtr(aMq)]trMq + dmtr(aM2

q )
}

bm = −1
2 + O(g20), b̄m = O(g40), etc.
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Lattice Feynman rules and many observables of interest are very complicated!

Numerical stochastic perturbation theory? Di Renzo et al. ’94

? Fully automated numerical approach

? Effort tends to grow slowly with the loop order

? But: systematic & statistical errors

Recent developments: NSPT with SF bc, ISPT, HSPT

Brambilla et al. ’13, Dalla Brida & Hesse ’13, M.L. ’14, Dalla Brida, Kennedy & Garofalo ’15

Not discussed here: very-high-order computations, renomalons, resurgence

Bali, Bauer & Pineda ’14
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Outline

Numerical stochastic perturbation theory

• Standard NSPT

• Instantaneous stochastic perturbation theory

Taking the continuum limit . . .

• How does ISPT scale in this limit?

• Power-divergent statistical errors

• Another Langevin miracle
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NSPT recap

For simplicity, consider

S = a4
∑
x

{
1

2
∂µϕ(x)∂µϕ(x) +

1

2
(m2 + δm2)ϕ(x)2 +

g0
4!
ϕ(x)4

}

δm2 =

∞∑
k=1

(δm2)(k)gk0 : additive mass counterterm

Simulation based on Langevin equation

∂tφ = −δS
δφ

+ η

〈η(t, x)η(s, y)〉η = 2a−4δxyδ(t− s)

〈ϕ(x1) . . . ϕ(xn)〉 = 〈φ(t, x1) . . . φ(t, xn)〉η
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Stochastic perturbation theory Parisi & Wu ’81

φ =

∞∑
k=0

gk0φk

∂tφ0 = (∆−m2)φ0 + η

∂tφ1 = (∆−m2)φ1 − (δm2)(1)φ0 − 1
3!φ

3
0

etc.

In frequency-momentum space

φ̃0 = = (p̂2 +m2 − iω)−1η̃(ω, p)

φ̃1 = 1

6
+

1
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NSPT Di Renzo et al. ’94

• Choose a finite lattice of size T × L3 with some boundary conditions

• Integrate equations for φ0, φ1, . . . numerically with random initial values

• Replace average over η by time average

〈ϕ(x1) . . . ϕ(xn)〉order gk0

=
1

N

N∑
j=1

{φ(j∆t, x1) . . . φ(j∆t, xn)}order gk0 + O(N−1/2)

• Extrapolate results to vanishing integration step size ε

Main technical difficulties:

Extrapolation in ε, autocorrelations grow ∝ 1/a2, . . .
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ISPT ML ’14

Again

φ =

∞∑
k=0

gk0φk

but with

φ̃0 = = (p̂2 +m2)−1/2η̃0(p)

φ̃1 = 1

8

1

2
+

1 1

24
+

1

1

given instantaneously by Gaussian random fields η0(x), η1(x), . . .

⇒ No autocorrelations and no integration errors!
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ISPT in lattice QCD

Gauge potential, gauge fixing, etc. as usual

Expansion of the gauge potential

1

6

1 1 11

5

72

1

12
Nf2

1

Aaµ(x) =

1

= D−1χ1(x),
1

= χ∗1(x), χ1, χ2, . . . = pseudo-fermion noises
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There are many more vertices than in continuum QCD

"irrelevant"measure

⇒ Large number of tree diagrams

However

• Nothing is done by hand

• 2nd order is already interesting

• May organize computations efficiently

Order No. of diagrams

1 1

2 10

3 19

4 141

5 489

6 3524

7 16851

8 127143
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Does ISPT work out in practice?

Consider pure SU(3) gauge theory

L4 lattice with Schrödinger-functional boundary conditions

Compute running coupling Fritzsch & Ramos ’13

ḡ2(q) = const× t2 〈E(t, x)〉x0=L/2,
√
8t=0.3×L at q = 1/

√
8t

E(t, x) : YM action density at gradient-flow time t

In perturbation theory

〈E〉 = E0g
2
0 + E1g

4
0 + E2g

6
0 + . . .

⇒ αMS(q) = α(q) + k1α(q)2 + k2α(q)3 + . . .
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Computation of tree diagrams is cheaper than the measurement of E0, E1, E2

However

4 8 12 16 20 24

L/a

0

1×10
-3

2×10
-3

3×10
-3

4×10
-3

k = 0

k = 1

k = 2

A priori statistical error of t2Ek

~1/a p,  p≥1

Same behaviour is observed in the φ4 theory Dalla Brida, Kennedy & Garofalo ’15
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Statistical variances are not guaranteed to be free of power divergences!

k∑
j=0

〈φk−j(x)φj(y)〉 = 〈ϕ(x)ϕ(y)〉order gk0 logarithmically divergent

but

〈φ1(x)φ1(y)〉 = 1

24

1

4

2

+ +

missing

quadratically divergent

⇒ The continuum limit is difficult to reach beyond the lowest orders in g0
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How about NSPT?

The power counting is different in this case

〈φ1(t, x)φ1(s, y)〉 = 1

6

1 1

2
+

2

+ = log divergent

= (p̂2 +m2 − iω)−1

= [(p̂2 +m2)2 + ω2]−1

Actually, all correlation functions of φ0, φ1, . . . are only logarithmically divergent!
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Proof of the absence of power divergences

The Langevin equation has the form

Dφ0 = η, D = ∂t −∆ +m2

Dφk = Rk for all k ≥ 1

where

Rk = −
k−1∑
j=0

(δm2)(k−j)φj − 1
3!

k−1∑
j1,j2,j3=0

δk,j1+j2+j3+1φj1φj2φj3 .

Would like to show that the correlation functions

〈φk1(t1, x1) . . . φkn(tn, xn)〉

are at most logarithmically divergent
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Functional integral in 5d Zinn-Justin ’86

Add Lagrange-multiplier fields L0(t, x), L1(t, x), . . . , Ln(t, x)

〈φk1 . . . φkm〉 =
1

Z

∫
D[φ0] . . .D[φn]D[L0] . . .D[Ln] e−Sφk1 . . . φkm

S =

∫
dt a4

∑
x

{
L0(Dφ0 − L0) +

n∑
k=1

Lk(Dφk −Rk)

}
Power counting shows that

• Theory is renormalizable

• Power divergences can be canceled by the counterterms∫
dt a4

∑
x

n∑
k>j=0

ckjLkφj , ckj ∝ 1/a2
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However, the fixed-order two-point functions

k∑
j=0

〈φk−j(t, x)φj(s, y)〉

are known to be only logarithmically divergent

⇒ The contributions of the counterterms must cancel in these functions

⇒ The coefficients ckj can recursively be shown to vanish

⇒ There are in fact no power divergences!
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Conclusions

NSPT

Pros:

Suitable for high-order computations

Statistical errors scale well

Cons:

Autocorrelations grow like 1/a2

Integration step size errors

Future:

Replace Langevin by HMC or SMD

ISPT

Pros:

Exact simulation

No autocorrelations

Cons:

Power-divergent statistical errors

Purely diagrammatic approach, little
theoretical control

Future:

Try to get rid of power divergences
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