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1. Basic multilevel strategy

In lattice gauge theory, an important error reduction through a multilevel algorithm was
first achieved by

[1] G. Parisi, R. Petronzio, F. Rapuano, A measurement of the string tension near the
continuum limit, Phys. Lett. B 128 (1983) 418

in a computation of Wilson loops in the SU(3) gauge theory. The algorithm became known
as the “multihit method” for Wilson lines and was widely adopted.

Nearly 20 years later, a more efficient multilevel algorithm for large Wilson loops was
described in

[2] M. Liischer, P. Weisz, Locality and exponential error reduction in numerical lattice
gauge theory, JHEP 09 (2001) 010.

The 2-level algorithm for the spin-field theory discussed in the first lecture coincides with
the one proposed in

[3] H. B. Meyer, Locality and statistical error reduction on correlation functions, JHEP
01 (2003) 048

for correlation functions of small Wilson loops.

Multilevel algorithms are normally not used in spin-field theories, since the exponential
loss of precision can be avoided in this case through cluster and other collective algorithms.
An algorithm of this kind first appeared in



[4] U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62
(1989) 361

and an associated improved observable for the spin 2-point function was introduced in

[5] U. Wolff, Asymptotic freedom and mass generation in the O(3) non-linear o-model,
Nucl. Phys. B 334 (1990) 581.

To date such collective algorithms are however not available for non-Abelian gauge theories
in four dimensions.

2. Exponential loss of significance in QCD

The relation between the statistical errors of hadron correlation function and the hadron
spectrum was first discussed in

[6] G. Parisi, The strategy for computing the hadronic mass spectrum, Phys. Rept. 103
(1984) 203

and later in more detail in

[7] G. P. Lepage, The analysis of algorithms for lattice field theory, in: From actions to
answers, Eds. T. DeGrand, D. Toussaint (World Scientific, Singapore, 1990).

While the argumentation in these papers is not completely rigorous, there is ample nu-
merical evidence for the correctness of the derived results.

3. Multilevel strategy in QCD

The multilevel algorithm discussed in the lectures was put forward in

[8] M. Ce, L. Giusti, S. Schaefer, Domain decomposition, multi-level integration and
exponential noise reduction in lattice QCD, Phys. Rev. D 93 (2016) 094507,

[9] M. Ce, L. Giusti, S. Schaefer, A local factorization of the fermion determinant in
lattice QCD, Phys. Rev. D 95 (2017) 034503.

Since this seminal work appeared, various numerical studies were performed and the al-
gorithm has seen further developments. The most recent published articles are
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[10] M. Dalla Brida, L. Giusti, T. Harris, M. Pepe, Multi-level Monte Carlo computation
of the hadronic vacuum polarization contribution to (g, —2), Phys. Lett. B 816 (2021)
136191,

[11] L. Giusti, M. Saccardi, Four-dimensional factorization of the fermion determinant in
lattice QCD, Phys. Lett. B 829 (2022) 137103.

Many related conference reports are quoted in these two papers.

4. Multiboson representation

The multiboson representation was introduced in

[12] M. Liischer, A new approach to the problem of dynamical quarks in numerical simu-
lations of lattice QCD, Nucl. Phys. B 418 (1994) 637.

In the lectures, a complex variant of the multiboson representation is discussed following

[13] A. Borici, P. de Forcrand, Systematic errors of Liischer’s fermion method and its
extensions, Nucl. Phys. B 454 (1995) 645,

[14] A. Borrelli, P. de Forcrand, A. Galli, Non-Hermitian exact local bosonic algorithm
for dynamical quarks, Nucl. Phys. B 477 (1996) 8009.

The state of the multiboson representation and its use for numerical simulations of QCD
at the end of the 1990’s was summarized in

[15] P. de Forcrand, The multiboson method, Parallel Comput. 25 (1999) 1341.

In the following years, the multiboson representation did not receive much attention until it
was used in ref. [9] to represent the determinant of the SAP-preconditioned Dirac operator.

5. Schwarz alternating procedure (SAP)

In its original form, the SAP is an iterative algorithm for the solution of elliptic linear
differential equations. Nowadays it is mostly used as preconditioner for difference operators
in two and three dimensions such as the discretized Laplace operator. See

[16] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. (SIAM, Philadelphia,
2003),



for example, for an introduction to the subject (an older version of the book is freely
available at https://www-users.cs.umn.edu/ saad/).
In lattice QCD, the application of the non-overlapping SAP was first considered in

[17] M. Liischer, Solution of the Dirac equation in lattice QCD using a domain decompo-
sition method, Comput. Phys. Commun. 156 (2004) 209.

Preconditioners of the Dirac operator can lead to factorizations of the quark determinant,
which permit the short-distance effects of the quarks to be separated from their long-
distance effects. The simulation algorithm described in

[18] M. Liischer, Schwarz-preconditioned HMC' algorithm for two-flavour lattice QCD,
Comput. Phys. Commun. 165 (2005) 199

implements this general strategy using the non-overlapping SAP as preconditioner.

The factorization of the quark determinant discussed in the lectures coincides with the
one discussed in ref. [9], but the connection with the overlapping SAP was discovered only
after this paper appeared and is therefore not mentioned there.

6. Factorization of correlation functions

Multilevel simulations of QCD require the factorization of both the quark determinant and
the observables. In the case of the meson and baryon correlation functions, the associated
quark-line diagrams can be approximately factorized in various ways, the approximation
error being corrected at level 0 of the simulations.

Such factorizations were discussed already in the first papers on the subject [8,9] and
later in many publications, including

[19] L. Giusti, M. Ce, S. Schaefer, Multi-boson block factorization of fermions, EPJ Web
Conf. 175 (2018) 01003,

[20] L. Giusti, T. Harris, A. Nada, S. Schaefer, Multi-level integration for meson propa-
gators, PoS LATTICE2018 (2018) 028

and ref. [10].

At present the factorization of the quark-line diagrams contributing to meson and baryon
correlation functions is still a research topic with ample room for further consolidation and
development. The nearly exact factorization of the vector meson propagator discussed in
the lectures, for example, has not yet been studied numerically and its viability in practice
thus remains to be assessed.



