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? Hermann Amandus Schwarz 1870:

Dirichlet problem in complicated domains

? Probably first DD method

? Now very important in engineering
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Uses of the SAP in lattice QCD

12× 24 lattice, periodic b.c.

1. Preconditioner for the lattice

Dirac equation Dψ = η

2. Blocked HMC algorithm for

two-flavour QCD

M.L. ’03 [JHEP 0305 (2003) 052; CPC 156 (2004) 209]
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Which are the possible benefits?

• Parallelization efficiency

� Communication overhead

� Data locality

• Algorithmic acceleration

� Separation of short- & long-distance effects

� Quark mass dependence

� HMD stability
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Block decomposition of the Dirac operator

black blocks: Ω

white blocks: Ω∗

exterior boundaries: ∂Ω, ∂Ω∗

Wilson–Dirac operator

D = 1
2 {γµ (∇∗µ +∇µ )−∇∗µ∇µ}+m0

= DΩ +DΩ∗ +D∂Ω +D∂Ω∗

DΩ =
∑

blackΛ

DΛ, DΩ∗ =
∑

whiteΛ

DΛ
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Classical SAP

Generates approximate solutions ψ0, ψ1, . . . of Dψ = η through

ψn+1 = ψn +D−1
Ω (η −Dψn) (if n is even)

= ψn +D−1
Ω∗ (η −Dψn) (if n is odd)

∗ ψn+1 = ψn in the complementary domain

∗ Amounts to alternatingly solving the Dirichlet

problem on Ω and Ω∗
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After 2n steps, starting from ψ0 = 0, the procedure yields

ψ2n = K

n−1∑
ν=0

(1−KD)ν
η

K ≡ D−1
Ω +D−1

Ω∗ −D−1
Ω∗D∂Ω∗D

−1
Ω

⇒ ψ2n converges to the exact solution if ‖1−KD‖ < 1

Appears to be so in practice, but the convergence is slow
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Schwarz preconditioner

Solve the preconditioned system

DMsapφ = η, Msap ≡ a few Schwarz cycles,

using a Krylov space solver, and set ψ = Msapφ

• GCR or FGMRES can be used here

• Accurate block solves are not required

• Ex.: 4 block MR steps, 5 Schwarz cycles
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Numerical tests

48× 243 lattice, a = 0.10 fm, mq = 0.2 . . . 0.7×ms (pts of CP-PACS ’03)

Using 8 nodes (16 processors) of a recent PC cluster

Schwarz block size 62 × 42, residue ‖η −Dψ‖ ≤ 10−8‖η‖
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Parallel efficiency

32× 163 lattice, a = 0.10 fm

mq ' 0.2×ms, residue 10−8

Schwarz block size 8× 43

Using up to 32 nodes (64 processors)
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Blocked HMC algorithm for two-flavour QCD

Factorization of the quark determinant

D =

(
DΩ D∂Ω

D∂Ω∗ DΩ∗

)
}Ω

}Ω∗

detD = detDΩ detDΩ∗ det{1−D−1
Ω D∂ΩD

−1
Ω∗D∂Ω∗}

May use even-odd preconditioning on the blocks

detDΩ detDΩ∗ =
∏

blocksΛ

det D̂Λ

↑
Dirichlet b.c., even-odd preconditioned
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H∂Ω∗: quark fields on ∂Ω∗
The quark determinant thus becomes

detD =
∏

blocksΛ

det D̂Λ × detR

where the block interaction operator R is

R : H∂Ω∗ → H∂Ω∗

R = 1− P∂Ω∗D
−1
Ω D∂ΩD

−1
Ω∗D∂Ω∗

Its inverse is simply given by

R−1 = 1− P∂Ω∗D
−1D∂Ω∗
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The associated pseudo-fermion action reads

Spf =
∑

blocksΛ

‖D̂−1
Λ φΛ‖2 + ‖R−1χ‖2

where χ is defined on ∂Ω∗ and φΛ on the even sites in Λ

We now

• evolve only the active links in the

blocks and

• translate the gauge field by a

random vector after each trajectory
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Test runs

β = 5.6, a ∼ 0.085 fm SESAM & TχL ’03

Trajectory length 0.5 ⇒ 〈link path length〉 = 0.53

SAP+GCR solver for Dψ = η

Residues 10−6 . . . 10−11 ⇒ reversibility |(U ′ − U)ij| < 10−8

lattice κ ∼ mq/ms block size HMD steps Ntraj Pacc

32× 163 0.15750 0.84 84 4, 5, 4 12000 0.81

0.15800 0.44 84 5, 5, 4 13100 0.86

0.15825 0.26 84 6, 5, 4 9800 0.90

32× 243 0.15750 0.84 8× 62 × 12 5, 5, 4 8000 0.82
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distance from ∂Λ

HMD driving force

d
dt
U(x, µ) = Π(x, µ)U(x, µ)

d
dt

Π(x, µ) = −FG(x, µ)−FΛ(x, µ)−FR(x, µ)

32× 163 lattice

? The magnitudes are roughly

28 : 7 : 1

? Short- and long-distance effects

are separated

? Quark mass dependence is weak
mq

↓
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V −5/4

Integration step sizes

Rδτ  = Λ5δτ  , Λδτ  = 4δτG

⇒ only few evaluations of FR are required

Sexton & Weingarten ’92; Peardon & Sexton ’02

Timings

Accepted trajectories per day

using 8 nodes (16 processors)
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HMD stability

32× 163 lattice, κ = 0.1580 [mq/ms ∼ 0.44]

Large spikes in ∆H are avoided by applying the rule

if |∆H0→1| > 1.0 replay trajectory with δτ → 1
2δτ

and accept with Pacc = min{1, e−∆H0→2} if |∆H2→3| > 1.0

Preserves detailed balance M.L. & R. Sommer ’04 (to be published)
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Autocorrelation times

Still working on this . . .

32× 163 lattice, κ = 0.1580 [mq/ms ∼ 0.44]

∗ τint(plaquette) = O(50) trajectories

∗ Fields separated by ∼ 100 trajectories are practically decorrelated

Verified for
∑

~x 〈P (x)P (0)〉,
∑

~x 〈A0(x)P (0)〉, . . .
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Conclusion

The application of the Schwarz procedure in QCD

leads to a

? fast solver for the Dirac equation and an

? efficient simulation algorithm for “QCD light”

Ex.: 64× 323 lattice, a ∼ 0.1 fm, mq ∼ 1
4ms looks

feasible on a PC cluster with 128 nodes
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Todo list

? Improved actions (SW, Iwasaki, LW, . . .)

? QCD with 2 + 1 flavours of quarks

? Low-mode deflation
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