Application of the Schwarz alternating procedure in lattice QCD

Martin Lüscher

CERN — Theory Division

- Hermann Amandus Schwarz 1870:
 Dirichlet problem in complicated domains
- ★ Probably first DD method
- ★ Now very important in engineering

Center for Computational Sciences, University of Tsukuba, May 2004

Uses of the SAP in lattice QCD

- 1. Preconditioner for the lattice Dirac equation $D\psi = \eta$
- 2. Blocked HMC algorithm for two-flavour QCD

M.L. '03 [JHEP 0305 (2003) 052; CPC 156 (2004) 209]

 12×24 lattice, periodic b.c.

Which are the possible benefits?

- Parallelization efficiency
 - ◊ Communication overhead
 - ◊ Data locality
- Algorithmic acceleration
 - ◊ Separation of short- & long-distance effects
 - ◊ Quark mass dependence
 - ♦ HMD stability

Block decomposition of the Dirac operator

black blocks: Ω

white blocks: Ω^*

exterior boundaries: $\partial \Omega$, $\partial \Omega^*$

Wilson–Dirac operator

$$D = \frac{1}{2} \{ \gamma_{\mu} (\nabla_{\mu}^{*} + \nabla_{\mu}) - \nabla_{\mu}^{*} \nabla_{\mu} \} + m_{0}$$
$$= D_{\Omega} + D_{\Omega^{*}} + D_{\partial\Omega} + D_{\partial\Omega^{*}}$$
$$D_{\Omega} = \sum_{\text{black } \Lambda} D_{\Lambda}, \qquad D_{\Omega^{*}} = \sum_{\text{white } \Lambda} D_{\Lambda}$$

0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	٠	٠	0	•	٠	٠	٠	٠	0
0	•	•	•	•	0	•	•	٠	٠	٠	0
0	•	•	•	٠	0	•	٠	٠	٠	٠	0
0	•	•	•	•	0	•	•	٠	٠	٠	0
0	0	0	0	0	0	•	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	٠	0	0	•	•	•	•	0
•	•	•	•	•	•	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	٠	•	0	0	•	•	•	•	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	•	•	•	٠	•	0
0	•	•	•	•	0	•	•	•	•	•	•
0	•	•	•	•	0	•	•	•	•	•	0
0	•	•	•	•	0	•	•	•	٠	•	0
0	0	0	0	0	0	•	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	٠	•	0	0	•	•	•	•	0
•	•	•	•	•	•	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0	0	0	0	0	0	0	0	0	0	0	0

Classical SAP

Generates approximate solutions ψ_0, ψ_1, \ldots of $D\psi = \eta$ through

$$\psi_{n+1} = \psi_n + D_{\Omega}^{-1} \left(\eta - D\psi_n \right)$$
 (if *n* is even)

$$= \psi_n + D_{\Omega^*}^{-1} \left(\eta - D\psi_n \right) \qquad \text{(if } n \text{ is odd)}$$

* $\psi_{n+1} = \psi_n$ in the complementary domain

* Amounts to alternatingly solving the Dirichlet problem on Ω and Ω^*

After 2n steps, starting from $\psi_0 = 0$, the procedure yields

$$\psi_{2n} = K \sum_{\nu=0}^{n-1} \left(1 - KD \right)^{\nu} \eta$$

$$K \equiv D_{\Omega}^{-1} + D_{\Omega^*}^{-1} - D_{\Omega^*}^{-1} D_{\partial \Omega^*} D_{\Omega}^{-1}$$

 $\Rightarrow \psi_{2n}$ converges to the exact solution if ||1 - KD|| < 1

Appears to be so in practice, but the convergence is slow

Schwarz preconditioner

Solve the preconditioned system

 $DM_{\mathrm{sap}}\phi=\eta, \qquad M_{\mathrm{sap}}\equiv \mathsf{a} \text{ few Schwarz cycles,}$

using a Krylov space solver, and set $\psi = M_{\rm sap}\phi$

- GCR or FGMRES can be used here
- Accurate block solves are not required
- Ex.: 4 block MR steps, 5 Schwarz cycles

Numerical tests

 48×24^3 lattice, a = 0.10 fm, $m_q = 0.2 \dots 0.7 \times m_s$ (pts of CP-PACS '03) Using 8 nodes (16 processors) of a recent PC cluster Schwarz block size $6^2 \times 4^2$, residue $\|\eta - D\psi\| \le 10^{-8} \|\eta\|$

Parallel efficiency

 32×16^3 lattice, a = 0.10 fm $m_q \simeq 0.2 \times m_s$, residue 10^{-8} Schwarz block size 8×4^3 Using up to 32 nodes (64 processors)

Blocked HMC algorithm for two-flavour QCD

Factorization of the quark determinant

$$D = \begin{pmatrix} D_{\Omega} & D_{\partial\Omega} \\ D_{\partial\Omega^*} & D_{\Omega^*} \end{pmatrix} \Omega^*$$

$$\det D = \det D_{\Omega} \det D_{\Omega^*} \det \{1 - D_{\Omega}^{-1} D_{\partial \Omega} D_{\Omega^*}^{-1} D_{\partial \Omega^*} \}$$

May use even-odd preconditioning on the blocks

Dirichlet b.c., even-odd preconditioned

The quark determinant thus becomes

$$\det D = \prod_{\operatorname{blocks}\Lambda} \det \hat{D}_{\Lambda} \times \det R$$

where the block interaction operator R is

$$R: \mathcal{H}_{\partial\Omega^*} \to \mathcal{H}_{\partial\Omega^*}$$

$$R = 1 - \frac{P_{\partial \Omega^*}}{D_{\Omega^*}} D_{\partial \Omega}^{-1} D_{\partial \Omega} D_{\Omega^*}^{-1} D_{\partial \Omega^*}$$

Its inverse is simply given by

$$R^{-1} = 1 - P_{\partial \Omega^*} D^{-1} D_{\partial \Omega^*}$$

 $\mathcal{H}_{\partial\Omega^*}$: quark fields on $\partial\Omega^*$

The associated pseudo-fermion action reads

$$S_{\rm pf} = \sum_{\rm blocks\,\Lambda} \|\hat{D}_{\Lambda}^{-1}\phi_{\Lambda}\|^2 + \|R^{-1}\chi\|^2$$

where χ is defined on $\partial \Omega^*$ and ϕ_Λ on the even sites in Λ

We now

- evolve only the active links in the blocks and
- translate the gauge field by a random vector after each trajectory

Test runs

$$\begin{split} \beta &= 5.6, \ a \sim 0.085 \, \text{fm} & \text{SESAM \& T_{\chi}L '03} \\ \text{Trajectory length } 0.5 & \Rightarrow \langle \text{link path length} \rangle = 0.53 \\ \text{SAP+GCR solver for } D\psi &= \eta \\ \text{Residues } 10^{-6} \dots 10^{-11} & \Rightarrow \text{reversibility } |(U' - U)_{ij}| < 10^{-8} \end{split}$$

lattice	κ	$\sim m_q/m_s$	block size	HMD steps	$N_{ m traj}$	$P_{\rm acc}$
32×16^3	0.15750	0.84	8^4	4, 5, 4	12000	0.81
	0.15800	0.44	8^4	5, 5, 4	13100	0.86
	0.15825	0.26	8^4	6, 5, 4	9800	0.90
32×24^3	0.15750	0.84	$8\times 6^2\times 12$	5, 5, 4	8000	0.82

HMD driving force

$$\frac{\mathrm{d}}{\mathrm{d}t}U(x,\mu) = \Pi(x,\mu)U(x,\mu)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}\Pi(x,\mu) = -F_{\mathrm{G}}(x,\mu) - F_{\Lambda}(x,\mu) - F_{R}(x,\mu)$$

- ★ The magnitudes are roughly 28:7:1
- ★ Short- and long-distance effects are separated
- ★ Quark mass dependence is weak

 $\mu)$

Integration step sizes

 $\delta \tau_R = 5 \delta \tau_\Lambda, \quad \delta \tau_\Lambda = 4 \delta \tau_G$

 \Rightarrow only few evaluations of F_R are required

Sexton & Weingarten '92; Peardon & Sexton '02

Timings

Accepted trajectories per day using 8 nodes (16 processors)

HMD stability

Preserves detailed balance

M.L. & R. Sommer '04 (to be published)

Autocorrelation times

Still working on this ...

* $\tau_{int}(plaquette) = O(50)$ trajectories

* Fields separated by ~ 100 trajectories are practically decorrelated Verified for $\sum_{\vec{x}} \langle P(x)P(0) \rangle$, $\sum_{\vec{x}} \langle A_0(x)P(0) \rangle$, ...

Conclusion

The application of the Schwarz procedure in QCD leads to a

- \star fast solver for the Dirac equation and an
- ★ efficient simulation algorithm for "QCD light"

Ex.: 64×32^3 lattice, $a \sim 0.1 \,\text{fm}$, $m_q \sim \frac{1}{4} m_s$ looks feasible on a PC cluster with 128 nodes

Todo list

- ★ Improved actions (SW, Iwasaki, LW, ...)
- \bigstar QCD with 2+1 flavours of quarks
- ★ Low-mode deflation