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Master-field simulations

Example

e Consider QCD on a 256% lattice with periodic bc
a=005fm = L=128fm

e Generate 1 representative gauge field

e The translation averages
1
(O@)) = > O +2)

of local observables then satisfy

(O(@)) = (O()) +O(V~1/2)

Note: 1 x 256% = 256 x 64* = does not require astronomical resources!



Outline

e Statistical error estimation
e Some illustrative calculations

e Generation of master fields
¢ Simulation algorithm
¢ Global operations & decisions

¢ SMD w/o accept-reject step

e Calculation of hadron propagators



Statistical error estimation

The translation average

(O())

is a stochastic variable with mean (O(z)) and variance

({(Ow)) — (0@)F) = 3 S {OW)OWO)).



Statistical error estimation

The translation average

(O())

is a stochastic variable with mean (O(z)) and variance
({(Ow)) — (0@)F) = 3 S {OW)OWO)).

= {3 10)0WO). + 0@ )

lyl<k
- %{ Z (O(y)O(0))e + O(e™™) + O(V*l/Q)}

ly|I<R

Double sum over y and z done with computational effort oc V' In V' using the FFT



Statistical error estimation (cont.)

The variance of the average

O) == 3" 0@ly_y,
k=1

over several fields Uy, ..., U, is similarly given by
1 _
={ X ©woo).+...}
ly|<R

provided the autocorrelation functions of O(z)
* are translation invariant and

* decay rapidly in space



Sample calculations

SU(3) gauge theory
96* and 192* lattice with @ = 0.1 fm

E = YM action density at gradient-flow
time t ~ t,

Using 64 nodes @ CESGA (1536 cores, 8 TB)

Relative error of {E) [per mille]
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Relative error of {E) [per mille]
Sample calculations SRR E
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Sample calculations (cont.)

The topological susceptibility

xe= Y. {a@a(0))c +Oe™™F) + O(V~/2)

ly|I<R

may be calculated with 1 master field

e Fixed-topology effects are oc V'~ *
and thus subleading!

Brower et al. '03, Aoki et al. '07

® The observable here is

Ox)= Y qlz+y)q(z)

ly|[<R
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Sample calculations (cont.)

The topological susceptibility

Xt =

may be calculated with 1 master field

e Fixed-topology effects are oc V'~ *

> (a@)a(0))e + O™ )+ O(V1/2)

ly|I<R

and thus subleading!

Brower et al. '03, Aoki et al. '07

® The observable here is

O(x)

=Y a@+yl@)

ly|[<R

3x107°

Susceptibility at gradient-flow time 7,

a=0.05fm

t

= Chowdhury etal. ’13
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Sample calculations (cont.)

Correlation functions such as
Cr(z) = (E(z)E(0)).

x |x‘—3/2e—m|r|
|| =00

can be calculated too provided |z| < L

The projection to P = 0 however tends
to increase the noise

ACL(x)
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Generation of master fields
Any correct simulation algorithm may in principle be used

In the thermalization phase

® Use space-time reflections to build configurations
from smaller lattices

o May study autocorrelations on these lattices



Generation of master fields (cont.)
Global operations & decisions must be reconsidered on very large lattices

Solver stopping criterion

DY —nll2 < plnlla, Inll2 o VvV (in the HMC algorithm)
Will have to
e Replace || - |l2 by || - ||loo

e Use SAP, local deflation, multigrid, . ..
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Generation of master fields (cont.)

HMC accept-reject step
AH x V7V, loss of significance o< V'

=> numerical precision must increase with V'

Other options include

e Localizing the algorithm
Ce, Giusti & Schaefer '16f — plenary talk by Leonardo Giusti

e Using the SMD algorithm w/o accept-reject step
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Generation of master fields (cont.)

Stochastic molecular dynamics (SMD)

Random rotation: 7 — 17 + cov,

¢ — 19+ cax

MD evolution: (m,U)t = (1, U)p4e

Horowitz '85ff, Jansen & Liu '95

co=e % A4 =1

12



Generation of master fields (cont.)

Stochastic molecular dynamics (SMD) Horowitz '85ff, Jansen & Liu '95
Random rotation: T — ¢17 + cov, cp =e ¢, C? + cg =1
¢ — 19+ cax
MD evolution: (m,U)t = (1, U)p4e
Theorem:

The SMD process converges to a unique stationary state if € < €,
where € depends on the gauge action and the MD integrator

Proof based on

Yet another look at Harris' ergodic theorem for Markov chains (Hairer & Mattingly '08)
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Generation of master fields (cont.)

Example

Wilson gauge action

4™ order OMF integrator (1 step)
= €=0.06xg3

Expect systematic errors o< €*

64* lattice, a = 0.05 fm
Run length = 1.8 x 10* [MD time]

=> Viable algorithm for large lattices

Relative deviation from exact value
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Calculation of hadron propagators

No of source points o V'
However
e Useful range of distances is a few fm
e Since

1S ()| o exp{—gmn|z —yl}

may solve Dirac equation in subvolume
® Random-field representation

action = (D'¢, D'¢)

S(z,y) = Sa(e,y) + (D'x(@) ox(v)'),

~—

~e %mﬂ-d(z)

+«— ~5fm —
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Conclusions

Master-field simulations of physically large lattices

* Extend the scope of numerical LQCD

* Provide a solution to the topology-freezing problem

Further algorithm R&D is desirable

* Reuvisit global operations & decisions

* Implement multilevel strategies — parallel talk by Marco C&

Technical challenges

* Memory requirement (5...100 TB on 256* lattices)

* Parallel 1/0, storage — parallel talk by Marcus Hardt
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